

Infants, auditory steady-state responses (ASSRs), and clinical practice

Susan Small, PhD University of British Columba Hamber Professor of Clinical Audiology

Phonak 2016, Atlanta, GA October 2-5, 2016

Disclosure statement

BC Early Hearing Program (consultant): receive honorarium that contributes to my research program; Hamber Chair position: small contribution to research program

Other funding UBC Faculty of Medicine

TOPIC AREAS TO BE ADDRESSED

Overview of ASSRs

Stimuli & EEG parameters

Estimation of infant hearing thresholds

Isolation of test cochlea

Clinical implications

Future research needed

Blending real-life learning with sound science.

Overview of ASSRs

Clinical goal for ASSR testing?

Identification of hearing loss

- -- Air-conduction (AC) thresholds within normal limits?
- -- AC thresholds elevated?
- If AC thresholds elevated, estimate bone-conduction (BC) thresholds
 - -- type of hearing loss
 - -- degree of conductive loss if present
- When hearing loss is identified, frequency- & ear-specific thresholds estimated to plan intervention services

What are ASSRs?

- Evoked potential that is <u>repetitive</u> in nature & is analyzed in terms of its <u>frequency components</u> rather than its waveform
- For high enough rates, a "sinusoidal" response is elicited with a frequency that matches the presentation or "modulation" rate

Amplitude maxima in adults (reviewed in Picton et al.,2003)

- 70-110 Hz modulation rate: 1^o brainstem response (Picton et al., 2003)
- ~40 Hz modulation rate: 1⁰ cortical & brainstem (Herdman et al, 2002)
- > Most research and clinical applications for <u>infants</u>
 - -- 40-Hz smaller in sleep in infants versus adults (Picton et al., 2003)
 - -- 80-Hz or "brainstem" most of research & today's focus!

Single- & multiple-ASSRs presented to two ears simultaneously
-- depends on equipment available (focus on multiple ASSRs)

- Why consider ASSRs for the clinic when we have brief-tone auditory brainstem responses (ABRs)?
- -- brief-tone ABRs require considerable training & skill to interpret:
- Visual replicability of wave V? Absence of response? Waveform too noisy to interpret? Amplitude & latency features across test conditions?

Large pediatric centres: skilled, experience clinicians are available for ABR testing and do an excellent job!

Practical challenges:

- (i) New clinicians
- (ii) Clinicians with low infant-ABR case loads
- (iii) Countries or regions within countries with fewer resources for training
 - -- face difficulties conducting/interpreting AC & BC ABRs
- Solutions:
- (i) Method that requires less training & skill– ASSR?
- (ii) Telehealth ABR (emerging but still requires skilled clinician)

Blending real-life learning with sound science.

- > Why ASSRs?
- (i) frequency-specific stimuli
 - growing # of choices (advantage or disadvantage?)
- (ii) response presence/absence is statistically determined
 - objective rather than subjective interpretation of waveforms
- (iii) multiple stimuli can be presented to both ears simultaneously
 - efficient use of clinical time (2/3 time of ABR)

[van Maanen & Stapells, 2009]

One example of ASSR analysis

Comparison of response amplitude @ modulation rate to surrounding noise frequencies: F statistic (p < .05) (for review see Picton et al., 2003)

Blending real-life learning with sound science.

Stimuli & EEG parameters

Many types of "frequency-specific" ASSR stimuli

BC ASSR threshold data (Small et al., 2007)

Bone oscillator coupling method in infants

elastic head band

No significant differences (with training)

Recommend: <u>Either</u>

Bone oscillator placement

Recommend: <u>"T" position</u>

Occlusion effect (OE): earphones in or out during infant BC testing?

Young infants (< 12 months) - negligible OE

Older infants (1-2 years) - emerging occlusion effect

(Small et al., 2007, Small & Hu, 2011)

Recommend: <u>0-1 year: leave earphones in</u> <u>1-2 years +: remove earphones (conservative)</u>

Blending real-life learning with sound science.

- can avoid post-auricular muscle response

Blending real-life learning with sound science.

Can record EEG ipsilateral & contralateral to mastoid stimulated to assist with isolation of the test ear (more later in presentation)

Estimation of infant hearing thresholds

Definition of terms currently used for ABR (BCEHP, 2012) Normal behavioural threshold:

• 25 dB HL

Normal ABR maximum level:

• ABR presentation level at which the majority of normalhearing infants have a response present

normal?

response must be present at normal ABR (dB nHL) max

eHL correction:

• Correction factor used to estimate behavioural hearing threshold (dB HL) from the ABR threshold

ABR threshold _____ eHL correction = (dB nHL) _____ (dB)

estimated behavioural threshold (dB HL)

Normal ABR maximum levels & eHL correction for infants Air- and bone-conduction ABR

	500 Hz		100	0 Hz	2000 Hz		4000 Hz	
	AC	BC	AC	BC	AC	BC	AC	BC
BC EHP								
Normal ABR Max	35	20	35	na	30	30	25	na
(dB nHL)								
Range in literature	30-35	20	30-35	na	20-30	30	20-25	na
BC EHP	10	5	10	na	5	5	0	na
eHL correction (dB)	10	5	10	Па	5	5	U	Па
Range in literature	10-15	-5	5-10	na	0-5	5	-5-0	na

(BC-EHP 2012, 2015; Small & Stapells, Ch. 21, 2017)

Mean AC & BC ASSR thresholds across 11 infant & 10 adult studies

AC: low > high frequencies BC: low < high frequencies

Maturational air-bone gap

(Lins et al, 1996; Cone-Wesson et al., 2002; John et al., 2004; Rance et al., 2005; Swanepoel & Steyn, 2005; Luts et al., 2006; Rance & Tomlin, 2006; van Maanen & Stapells, 2009; Ribeiro et al., 2010; Casey & Small, 2014; Valeriote & Small, 2015)

AC & BC: similar across frequency -- tendency for BC 500 Hz to be greater than other frequencies

(reviewed in Tlumak et al., 2007)

How well do AC ASSRs predict the audiogram in infants?

AC multiple ASSR versus AC behavioural thresholds/brief-tone ABR

- **Correlation coefficients:**
- <u>Adult</u>
- ➤ .70-.85 for 500 Hz
- .80-.95 for 1000-4000 Hz (for review see Tlumak et al., 2007)

<u>Infant</u>

- > .97 @ 500-4000 Hz (includes profound loss with "no response")
- .77-.89 @ 500-4000 Hz (excludes "no responses")
 - (Van Maanen & Stapells, 2010)

Normal ASSR maximum levels & eHL correction for infants Air- and bone-conduction ASSR AM Preliminary & conservative!

 $\Delta N I / F N I$

COS ³	500	Hz	1000	Hz	2000	Hz	4000	Hz
AM ² (Ages:0-79 ms)	AC		AC		AC		AC	
10 studies								
Normal ASSR Max	40-50		40-45		40		40	
(dB HL)								
Range in literature	40-52		30 to >50		30-50		28-44	
6 studies**								
eHL correction (dB)	10-20		10-15		10-15		5-15	
Range in literature	-3 to 20		0-17		0 - 6		-3 - 14	

(reviewed in Small & Stapells, Ch. 21, 2017: *Lins et al, 1996; John et al., 2004; Rance et al., 2005; Swanepoel & Steyn, 2005; Luts et al., 2006; Rance & Tomlin, 2006; van Maanen & Stapells, 2009; Ribeiro et al., 2010; Casey & Small, 2014; Valeriote & Small, 2015;**Rance & Briggs, 2002; Hanh et al., 2006; Luts et al, 2006; wan Maanen & Stapells, 2010; Rodrigues & Lewis, 2010; Chou et Al., 2012)

How well do BC ASSRs predict the audiogram in infants?

BC multiple ASSR versus AC behavioural thresholds/brief-tone ABR

- **Correlation coefficients:**
- Adult (sensorineural & simulated)
- ➤ .71 for 500 Hz
- .84-.94 for 1000-4000 Hz (Ishida, Cuthbert & Stapells, 2011)
- Adult BC-ASSR data is promising

<u>Infant</u>

> No correlational data available

Valeriote & Small (in prep): Infant: normal hearing versus mild conductive loss at 500 Hz

AC & BC ASSR data fall within ABR normal maximum levels

2000 Hz Normal Hearing

ASSR threshold (dB HL)

ABR threshold (dB nHL)

 AC: trend for elevated ASSR thresholds
but overlap for NH and mild CHL

for ASSR

BC: CHL and NH did not differ significantly as expected

ABR threshold (dB nHL)

Valeriote & Small (in prep)

Case 1: Adult with asymmetric conductive loss (stapes fixation bilaterally, poor surgical outcome left)

Small, unpublished

Normal ASSR maximum levels & eHL correction for infants Air- and bone-conduction ASSR Preliminary & conservative!

	500 Hz		1000 Hz		2000 Hz		4000 Hz	
AM/FM AM ²		BC		BC		BC		BC
8 studies (0-24 mos)								
Normal ASSR Max		30		20		40		30
(dB HL)								
Range in literature		30-40		10-30		30-40		10-40
BC EHP		20		20				10.0
eHL correction (dB)		na		na		Пd		Па
Range in literature		na		na		na		na

(Small & Stapells, Ch. 21, 2017)

Are multiple ASSRs more or less efficient than single ASSRs?

(Hatton & Stapells, 2011 & 2013)

Note: stimuli with broader spectra or higher presentation levels exhibit > interactions (Ishida & Stapells, 2012; Mo & Stapells, 2008, Wood, 2009)

> Recommend: Low-mid intensities – multiple ASSR High intensities – consider single ASSR

What about simultaneous AC & BC multiple ASSRs?

New study from Cuba (Torres-Fortuny et al., 2016)
-- compared ASSR amplitudes elicited to AC & BC stimuli at same time in both ears to only one mode at a time in NH infants

No significant reduction in amplitude for simultaneous AC/BC conditions; more data needed but clinical potential ...

AC & BC ASSRs & severe-to-profound loss

- Caution: can elicit vestibular responses to high-intensity AC & BC stimuli using ABR & ASSRs
- ABR- negative wave at ~ 3 ms at 95 & 110 dB nHL due to activation of the vestibular system- not auditory in nature but easy to identify in the waveform (Stapells, 2011)
- ASSRs can also be elicited from vestibular sources- cannot be differentiated from auditory responses - no time domain waveform available

-- spurious responses recorded at 50-60 dB HL for BC ASSRs; 118-120 dB HL for AC ASSRs (Small & Stapells, 2004)

Blending real-life learning with sound science.

Isolation of test cochlea

BC ABR: Utilize ipsilateral/contralateral asymmetries

Expected pattern for normal cochleae up to 1-2 years of age -normal hearing or conductive loss (e.g., aural atresia)

[e.g., Foxe & Stapells, 1993; Stapells & Ruben, 1989; Stapells & Mosseri, 1991]

Amplitude: contra <u>smaller than</u> ipsi

Latency: contra later than ipsi

Factors contributing to ipsi/contra asymmetries?

1. Greater IA (10-35 dB) compared to adults due to unfused cranial sutures

(Yang & Stuart 1987; Small & Stapells, 2008; Hansen & Small, 2012)

2. Infant-adult differences in positioning of neural generators

(see for review: Small & Stapells, 2017)

 Infant BC ABR/ASSRs show consistent ipsi/contra asymmetries @ near-threshold levels (adult do not) BC ABR: 500 & 2000 Hz (e.g., Stapells & Ruben, 1989)
BC ASSR: 500 & 4000 Hz (less consistent @1000 & 2000 Hz) (Small & Stapells, 2008; Small & Love, 2014)

more research needed for ASSRs to determine accuracy in infants with hearing loss

What if ipsi/contra asymmetries in BC ABR or ASSRs are ambiguous?

> MASK!

Main reason masking not routinely used clinically for infant BC ABRs: -- effective masking levels (EMLs) for BC ABR stimuli in young infants have not been measured directly

We estimated EMLs for BC ASSRs using binaural AC masking

(Hansen & Small, 2012; Small, Smyth & Leon, 2014)

Blending real-life learning with sound science.

Recommended EMLs (dB SPL) for BC ASSR stimuli presented at <u>35 dB HL</u>

	Frequency (Hz)								
	500	1000	2000	4000					
Infant	81 J	15 68 7	<mark>5</mark> 59	ך 45	-10				
Adult	66	* 63 -	* 59	55 -	*				

* Significant infant <u>minus</u> adult EML difference (dB)

Frequency-dependent infant-adult differences in EMLs except at 2000 Hz

(Hansen & Small, 2012; Small, Smyth & Leon, 2014)

Blending real-life learning with sound science.

Blending real-life learning with sound science.

