TELEPRACTICE IN PEDIATRIC AUDIOLOGY: EXPANDING AUDIOLOGY HORIZONS FOR CHILDREN WITH HEARING LOSS

De Wet Swanepoel, PhD

Dept of Speech-Language Pathology & Audiology, University of Pretoria, South Africa
Ear Sciences Centre, University of Western Australia, Ear Science Institute Australia
Callier Center for Communication Disorders, University of Texas at Dallas, USA

ACKNOWLEDGEMENTS

<u>Leigh Biagio & Faheema Mahomed</u>, Dept of Speech-Language Pathology & Audiology, University of Pretoria, **South Africa**

<u>Prof Claude Laurent & Dr Thorbjorn Lundberg</u>, *Depts of Otolaryngology and Family Medicine, Umea University,* **Sweden**

<u>Prof Robert Eikelboom</u>, *Ear Sciences Centre, School of Surgery,* University of Western Australia & Ear Science Institute **Australia**

OUTLINE

- Global Childhood Hearing Health Challenges
 - Prevalence
 - Access to care
- Exploring Novel Solutions Telehealth
 - Remote diagnosis of hearing loss in primary health care
 - Remote diagnosis of ear disease in primary health care

PREVALENCE OF CHILDHOOD HL

Global Situation

- Everyday **1753** born with significant permanent SNHL:
 - 1 643 born in developing world (5/1000)
 - 110 born in developed countries (3/1000)
- >90% born in developing world

PREVALENCE OF CHILDHOOD HL

Pogione	DHL in children (<15 yoa)			
regions	Millions	Prevalence %		
High-income	0.8	0.5		
Sub-Saharan Africa	6.8	1.9		
Middle East & North Africa	1.2	0.9		
South Asia	12.3	2.4		
Asia Pacific	3.4	2.0		
Latin America & Carribbean	2.6	1.6		
East Asia	3.6	1.3		
World	31.9	1.7		

HEARING HEALTH CARE ACCESS

HEARING HEALTH CARE ACCESS

HEARING HEALTH CARE ACCESS

- Available hearing health service distribution inequality
 - Geographical, weather and infrastructure obstacles
 - Large distances & remote communities
 - **Poor transport infrastructure**
 - Expensive referral pathways

EXPLORING TELEHEALTH

- Telehealth literally means "health care at a distance".
- Refers to "utilization of information and communication technology in health care".
- Provision of health services from one location to another using a telecommunications medium. Includes concepts of surveillance, health promotion and public health functions
- Terminology: telemedicine, online health, e-Health telepractice. "Tele" i.e. Tele-audiology, tele-therapy, tele-intervention.
- Recent addition mHealth provision of health care and public health, supported by mobile devices

Wootton 2009; WHO, 2013

TELEHEALTH - ICT

Concept as old as telecommunication mediums

TELEMEDICINE MODELS

- Synchronous, real-time
 - Videoconferencing
 - Desktop sharing software
 - Remote hardware control
- Asynchronous, store-and-forward
 - Fax, Email, Server uploads
 - Automation NB component
- Hybrid model

MOBILE REVOLUTION CONNECTIVITY

World Bank, 2012

EXPLORING NOVEL SOLUTIONS

(Swanepoel & Hall, 2010)

WITKOPPEN CLINIC - DIEPSLOOT

WITKOPPEN CLINIC - DIEPSLOOT

Witkoppen clinic University of Pretoria eMoyoDotNet

686

SUBJECTIVE ATTENUATION

- Validation study
- Within-subject repeated measures design comparing air (250 to 8000 Hz) and bone (250 to 4000 Hz) conduction thresholds in:
 - (1) Natural school environments
 - (2) Sound-treated booth
- 149 children (54% female) with an average age of 6.9 years (SD 0.6; Range 5 8) from 2 schools.
- Ave time between tests 9.3 days (± 8.4 SD) tympanometry & otoscopy to confirm no transient middle-ear pathology

- No significant differences (p>0.01) between the natural and audiometric booth environments within subjects between:
 - i. Thresholds recorded in natural and booth environments for air- and bone-conduction audiometry
 - ii. No of responses to pure-tone presentations
 - iii. Average reaction time
- Almost all air- (96%) and bone-conduction (97%) threshold comparisons between the natural and booth test environments were within 0 to 5 dB

AUTOMATED AUDIOMETRY?

• VOL. 16 NO. 5 • JUNE 2010 TELEMEDICINE and e-HEALTH Hearing Assessment—Reliability, Accuracy, and Efficiency of Automated Audiometry

De Wet Swanepoel, Ph.D.,^{1,2} Shadrack Mngemane, B.Comm.Path.,¹ Silindile Molemong, B.Comm.Path.,¹ Hilda Mkwanazi, B.Comm.Path.,¹ and Sizwe Tutshini, B.Comm.Path.¹

<u>Conclusions</u>: Automated audiometry provides reliable, accurate, and timeefficient hearing assessments for normal-hearing and hearing-impaired adults.

AUTOMATED AUDIOMETRY?

Validity of Automated Threshold Audiometry: A Systematic Review and Meta-Analysis

Faheema Mahomed,¹ De Wet Swanepoel,^{1,2,3} Robert H. Eikelboom,^{1,2,3} and Maggi Soer¹ Ear & Hearing 2013;34;745–752

Conclusions:

- **29** reports (method of limits and method of adjustment); 1956 2011.
- Meta-analysis test-retest and accuracy for automated audiometry was within typical test-retest variability for manual audiometry
- Provides an accurate measure of hearing threshold, but data limited for (i) automated BC audiometry; (ii) children and difficult-to-test populations and; (iii) different types and degrees of hearing loss

← → C [41.76.212.236/emoyoserver/

G	11.76.212.236/e	emoyoserver/TeleAud/	ViewResults.a	lspx			☆ 🤍	🔁 🖷 🍫	
GeoAxon - We take healthcare to the people									
н	lome eMoyo About	Admin Pages				Welcome DeWet.Sw	/anepoel! [<u>L</u>	.og Out]	
2	View/In	terpret Test I	Results						
					Test	t Count: 686		Back	
		VTC	C VC Folde		Folder				
		Witkoppen	\$ Se	lect	÷	Select	*	Run	
Sh	owing results for: W	/itkoppen	All			All			
View		Test Date	Interpreted	Caro Givor	Patient				
Tew	Witkoppen Witkoppen	2012/10/03 09:10:38 PM	A	Violet	ralitili				
	Witkoppen Witkoppen	2012/10/03 03:17:11 AM	4	Violet					
		2012/10/03 03:17:11 AM		Violet					
	witkoppen Witkoppen	2012/10/02 11:34:24 PN	<i>n</i>	VIOIEL					
	Witkoppen Witkoppen	2012/10/02 11:12:28 PM	1	Violet					
	Witkoppen Witkoppen	2012/10/01 02:07:25 AM	1	Violet					
	Witkoppen Witkoppen	2012/10/01 01:40:56 AM	1	Violet					
	Witkoppen Witkoppen	2012/10/01 01:21:33 AM	1	Violet					

Contact Us

- Complex cases
- Difficult-to-test patients
- Queries regarding validity of results

REMOTE AUDIOMETRY?

Original article

Intercontinental hearing assessment – a study in tele-audiology

De Wet Swanepoel**, Dirk Koekemoer* and Jackie Clark*§

*Department of Communication Pathology, University of Pretoria, Pretoria; [†]Research and Development Department, GeoAxon, Pretoria, South Africa; [‡]Callier Center for Communication Disorders, University of Texas at Dallas, Texas, USA; [§]Department of Speech and Hearing Therapy, University of the Witwatersrand, Johannesburg, South Africa

Journal of Telemedicine and Telecare 2010; 16: 248–252

<u>Conclusions</u>: There were no clinically significant differences between the results obtained by remote intercontinental audiometric testing and conventional face-to-face audiometry.

Background

- Global burden from chronic OM affect 65 330 million
- India & sub-Saharan Africa account for most deaths from OM
- COM 1) risk of hearing loss and 2) life-threatening complications (e.g. meningitis, brain abscesses)
- Largely **preventable** and **effective** medical management
- Early detection and treatment at primary health care can reduce long-term morbidity and mortality

BUT - Poor access to specialist personnel **limit diagnosis** and appropriate **treatment**

- Aim: To evaluate the effectiveness and accuracy of video-otoscopy recordings by a trained nonprofessional for remote diagnosis of ear disease in children
- Design: Within-subject comparative design
- Subjects: 140 unselected children (2 15 yoa; mean 6.4 <u>+</u>3.5 yoa; 44.3% female) attending a PHC
- Context:

Equipment and procedures:

Concordance of otomicroscopy and remote video-otoscopy

	Onsite diagnosis n = 272 ears	Remote diagnosis n = 269 ears Otologist (%)		R1 Kanna	
	Otologist (9/)			= 0.702	
	Otologist (%)	Review 1	Review 2	01702	
Normal	75.8	58.4	62.1	R2 Kappa = 0.740	
Otitis media:	16.5	16.7	14.5		
AOM	0.7	0.0	0.7		
CSOM	4.8	6.7	6.3	Substantial gareement	
SOM	11.0	10.0	7.5		
Undetermined	7.7	24.9	23.4		

Sens / Spec = 78% / 95%

Intra-rater diagnosis Kappa – 0.773

CONCLUSIONS

- A non-professional, with no health care training, can be trained to acquire adequate video otoscopic recordings for remote otologic diagnosis
- Remote diagnosis accuracy is similar to inter- and intra-rater agreement previously reported
- Accompanied with audiometric data it can be a valuable diagnostic tool to underserved populations
- Video recordings improved diagnostic utility above images
- More experience may improve quality of recordings

(Biagio, Swanepoel, Lundberg & Laurent, IN PRESS)

CONCLUSION

- Rapidly changing world
- Hearing loss and ear disorders prevalent with inadequate human resources to meet demands
- Continued **growth** in **technology** and **connectivity** will change the way in which we deliver services. E.g.
 - Remote hearing assessment
 - Remote ear diagnosis
- Promise of reaching more patients, and especially those in underserved areas, more effectively (time and cost)

