

Longitudinal Outcomes of children with hearing impairment: findings from the LOCHI study

Teresa YC Ching, PhD

Annual births: 134.8 million (2001)

听力损失发病率 1.2/1000

Est PCHI: 148,300

Population: 22.7 million

Annual births: 297,200 (2011)

Est PCHI: 327

Why LOCHI?

- Congenital hearing loss greatly reduces childre language, psychosocial skills, academic attainment and life chances (Thompson et al, 2001; Moeller et al, 2007; Nelson et al, 2008).
- UNHS aims to alleviate huge burden of disability
- 2008 US Preventive Services Task Force
 - "Moderate certainty that net benefit of screening all newborn infants for hearing loss is moderate"
 - Based on a single quasi-randomised trial
- Research on population outcomes scant

In 2005,

Longitudinal

Outcomes of

Children with

Hearing

mpairment ...

Aims

- Does UNHS and early intervention improve child language and literacy outcomes, at a population level?
- What factors (modifiable or otherwise) influence outcomes?
- Does early performance predict later outcomes?

Method

- About 460 participants from population in 3 states,
- YOB: 2002-2007
- 53% fitted with hearing aids and enrolled in early education < 6 months
- About 20% with non-English speaking background
- About 37% have additional disabilities

We collect a range of information,

Child

- Age at fitting
- Age at implantation
- Birthweight
- Gender
- Hearing thresholds
- HA Prescription
- Use of device
- Additional disabilities
- Auditory neuropathy
- Aetiology
- Cognitive ability

Family

- Communication mode
- Involvement in intervention
- Language used at home
- Maternal education
- Socio-economic status

Intervention

- Age at enrolment
- Communication mode
- Hours of intervention
- Parental involvement

And measure children's outcomes ...

- Expressive Communication
- Auditory comprehension
- Receptive vocab.
- Expressive vocab.

Language

- Articulation
- Phonological dev
- Speech perception
- Spatial release from masking

Speech

- Phonological awareness
- Reading
- Spelling
- Math reasoning

Literacy & numeracy

- Aural-oral function in real life
- Pragmatics
- · Mental health
- Quality of life

Psychosocial dev.

- Educational attainment
- Employment

- Working memory
- Orthographic learning
- Paired associate learning
- Lexical access

Cognition

At multiple intervals as they grow

AT 5 YEARS,

Age 5 Test scores: 25th, 50th, 75th percentiles...

To analyse findings,

- Combine multiple test scores into a global language score
- Fit regression models separately for
 - Children using hearing aids
 - Children using cochlear implants

Children with hearing aids

Significant Predictors for 243 children with HA

Impact of category change. For continuous variables, variation as per specification $R^2 = 77$

			A
Predictor	$R^2 = 74$	Significance (p)	p – value
Age first fit (log)		0.003	0.11
4FA hearing loss		<0.001	0.002
69Log Age first fit x 4FA		0.07	0.06
Cognitive ability/	Cognitive ability/WNV		<0.001
Gender		0.16	0.19
Birthweight	Birthweight		0.08
Other disability		0.04	0.13
	Maternal education (university re school)		0.01
Socio-economic s	status (dec)	0.39	0.44
Communication (other re oral)	mode in Edn	0.007	0.009
1			0.03

Increase in HTL decreases language ability

Effect of age at fitting on language, for different HL

Maternal education

Communication mode in early education

Children with cochlear implants

Significant Predictors for 114 children with Cl

Impact of category change. For continuous variables, variation as per specification.

	Predictor $R^2 = 70$	Significance (p – value)	Impact
$R^2 = 58$	Age first switch on (log)	0.001	
	4FA hearing loss	0.60	-0.06 (-0.30,0.17)
	Cognitive ability/WNV	<0.001	0.53 (0.37,0.69)
	Gender	0.15	
	(Female re male)		4.84 (-1.73, 11.42)
	Birthweight	0.79	0.51 (-3.27,4.3)
	Other disability	<0.001	-19.1 (-28.39,-9.83)
	Maternal education	0.20	
	(Dip re school)		4.64 (-4.33,13.61)
	(university re school)		8.28 (0.76,17.32)
	Socio-economic status (dec)	0.40	2.3 (-3.05, 7.65)
	Communication mode in Edn.	0.04	
	(other re oral)		-12.38 (-24.5,-0.31)
	(changed or nil re oral)		2.56 (-7.42,12.55)

Delaying CI switch-on decreases language ability

Communication mode in education

Yr 5 data suggest ...

If we add 3-yr scores as a predictor,

the model accounted for 86% of total variance of scores

SUMMARY

Does UNHS improve outcomes?

Early age at hearing-aid fitting Early age at cochlear implantation

Why does hearing loss affect language development?

Does early performance predict outcomes at 5 years?

- Language ability at 3 yrs accounted for 23% of variance in addition to other predictors (total: 83%)
- Language ability before 2 yrs accounted for 3% of variance at 5 yrs (total: 63%).
- Functional performance in real life (PEACH) before 2
 yrs was a significant predictor of language at 3 & 5 yrs.

To do ...

- Streamline services to ensure early fitting and implantation
- Monitor early outcomes to identify children who may be "at-risk" of language impairment
 - develop effective diagnostic methods,
 - Develop evidence-based strategies for intervention

NIH/NIDCD Grant: R01DC008080

OHS, Department of Health, Australia; Australian Hearing, NSW Department of Health, Australia;

Phonak Ltd, Oticon Foundation.

Acoustic

Laboratories

Royal Institute for

150 years of changing lives through education

From left to right: Linda Cupples, Louise Martin, Paola Incerti, Megan Gilliver, Kirst Gardner-Berry, Vicky Zhang, Sanna Hou, Vivienne Marnane, Teresa Ching, Miriam Gunnourie, Jessica Sjahalam-King, Lauren Burns, Harvey Dillon, Julia Day, Laura Street, Patricia Van Buynder, Jessica Thompson, Christopher Flynn. www.outcomes.nal.gov.au

For information

www.nal.gov.au www.nal.gov.au

Teresa.Ching@nal.gov.au

