

The Use of FM Technology in school-aged children with Autism Spectrum Disorder The Use of FM Technology in School-Aged children with Autism Spectrum Disorder

Gary Rance, Kerryn Saunders, Peter Carew, Marlin Johansson & Johanna Tan

Advances in Audiology Meeting, Las Vegas, December 2012

Background

Autism Spectrum Disorder (ASD)

– neurodevelopmental disorder affecting ≈ 1 in 120 children

Behavioural symptoms

- social interaction impairment
- communication deficit
- restricted, repetitive and stereotyped patterns of activity/interest

Sensory deficits (particularly auditory)

- consistently reported speech perception in noise deficits (Ornitz et al. 1989; Alcantara et al. 2004)
- inability to use brief gaps in noise to gain release from masking (Groen et al. 2009)

 Characterize the pattern of auditory deficits in children with ASD

 Determine whether FM-listening devices can improve speech understanding/general communication

Study Design

♦ Initial test session

- Psychophysical & formal speech perception testing
- FM device fitting (Inspiro device / iSense micro receiver)
- Comparison of aided (FM) and unaided scores

Study Design

♦6 week FM trial

- »1. Period of non-use (prior to fitting)
 »2. Two week period wearing the device
 »3. Another two week period wearing the device
 »4. Two week period of non-use
- Subjects completed a hearing disability questionnaire at the end of each period (APHAB)
- Teacher survey at end of trial (LIFE)

Subjects

♦ 20 children with ASD

- Diagnosis: Childhood Autism Rating Scale (CARS)
- Intelligence/Cognitive Profile:
 - Wechsler Intelligence Scale for Children (IQ>80)
- Education
- All in mainstream settings: secondary N=10, primary N=10
- Age range: 8 to 15.4 yrs
- 20 controls matched for age/gender/hearing level
 Identical test battery (apart from the FM trial)

Psychophysical Protocol

- Audiogram (4-freq average)
 -ASD: 12.6±6.4 dBHL
 -Control: 10.4±8.3 dBHL
- Temporal Resolution

 Ability to detect changes in stimuli over time
 Temporal modulation transfer function (TMTF)

Temporal Modulation Transfer Function (TMTF)

 Determines the listener's ability to perceive rapid amplitude changes in a continuous signal

- ♦ Variables
 - Modulation rate
 - Modulation depth

Spatial Processing

Binaural Speech Perception

- Listening in Spatialized Noise Test (LiSN-S)
- Speech in background noise
- Measures the listener's ability to use spatial cues to improve perception
- Spatial Advantage
 - Difference in speech reception threshold (SRT)
 - 2 test conditions:
 - Target speech and noise presented from the same direction (i.e. no spatial cues available)
 - Target and noise spatially separated (90⁰)

LiSN-S Spatial Advantage

LiSN-S Spatial Advantage

Hearing Disability Survey

 Abbreviated Profile of Hearing Aid Benefit (APHAB)

 Self-assessment survey examining various aspects of everyday listening and communication

- Evaluation categories
 - Ease of communication
 - Listening in background noise
 - Effect of reverberation
 - Aversion to sound

 Management of speech in noise problems

Personal FM systems

FM Test Setup: Free Field Speech in Noise

Speech: CNC words - 65 dBSPL
+0 dB S/N ratio (at the subject's head)

Results: Free-field Speech in Noise

◆ Control Group (N=20)

 – unaided: 78.9 ± 8.4%
 – aided (FM device): 89.1 ± 4.0%

◆ ASD Group (N=20)

 – unaided:
 – aided (FM device):
 68.9 ± 11.7%

Unaided/FM-Aided Speech Scores (ASD)

Subject #

6 Week FM-Device Trial

- ♦ Secondary School Children: 13-15 yrs (N=10)
 - All rejected
 - » Resistance from the child
 - » Inconsistent teacher support
- Primary School Children: 8-12 yrs (N=10)
 - 5 completed
 - 3 mid-trial: all consistent users at this stage
 - 2 rejected
 - » Both had significant behavioural problems

Educational Impact

- Listening Inventory For Education (LIFE)
- Completed by classroom teacher at the end of the FM-trial
- Aims to determine the efficacy of device usage

♦ 16 questions

- 1. "Focus on instructions has improved"
- -2. "Appears to understand instructions better"
- 14. "Socially more involved with other children"

Maximum score = 35

Listening Inventory For Education (LIFE) ASD Participants

Listening Inventory For Education (LIFE) ASD Participants

Conclusions

- ASD participants showed monaural & binaural auditory processing deficits
- Impaired speech perception (in noise) and a greater degree of everyday listening/communication difficulty
- All ASD subjects showed better speech perception in noise when wearing the FM device
 - teenagers failed to complete the FM trial
 - most of the younger participants (8-12 yrs) were still enthusiastic device users 6 weeks post-fitting

Acknowledgements

Co-authors

- Dr Kerryn Saunders: Pediatrician
- Peter Carew:
- Johanna Tan:
- Marlin Johansson:

Audiologist, The University of Melbourne Audiologist, The University of Melbourne Master of Audiology Student, (Lund University, Sweden)

♦ Hardware

- Phonak: who donated the FM systems

Funding Support

- Jack Brockhoff & Collier Foundations

Thankyou

