Brain plasticity: Implications for Rehabilitation

Kathy Pichora-Fuller

University of Toronto, Canada Toronto Rehabilitation Institute Linköping University, Sweden

We've come a long way in 10 years HEADLINE: Cognition & HA Benefit Correlated

- Landmark 2003 studies
 (Gatehouse et al.; Humes; Lunner)
 - ☐ Those with higher cognitive function
 - do better with complex, fast-acting signal processing by hearing aids
 - Those with lower cognitive function
 - do less well with such complex devices

Questions:

- Why does cognition matter?
- Should audiologists measure cognition?
- How would we measure it?
- What would we do with the results?

And there's a long (and winding) road ahead...

Everything old is new again....

http://www.youtube.com/watch?v=d7fy2Ls0zbA

Outline

- 1. More than one way to recognize a word
- 2. Cognitive aging, compensation, training
- 3. Implications for aural rehabilitation

Outline

- 1. More than one way to recognize a word
- 2. Cognitive aging, compensation, training
- 3. Implications for aural rehabilitation

M

Speech Intelligibility in Noise

Small set Sentences Familiarity

Listener Talker

Type of noise Task demands

Kryter 1994 – based on ANS 1969

Speech Perception in Noise Test (Pichora-Fuller, Schneider, Daneman, JASA, 1995)

- 8 lists of 50 sentences
 - Half low-context John did not talk about the feast.
 - ☐ Half high-context The wedding banquet was a feast.
- Repeat last word of sentence
- (Sometimes also recall)
- Vary S:N
 - □ + 15 dB S:N in quiet home
 - □ 2 dB S:N in subway/aircraft
- Old need 3 dB better S:N
 - Auditory temporal procesing
- Context helps

SIGNAL-TO-NOISE RATIO IN dB

Bottom-Up & Top Down Processing

- As listening becomes effortful
 - □ Bottom-up processing less efficient
 - □ Top-down processing more necessary
- Bottom-up (ear to brain)
 - Analysis of acoustic signal
 - Better signal (faster)
 - Poorer signal (slower)
- Top-down (brain to ear)
 - Priming
 - expectations facilitate recognition (faster)
 - Disambiguation or repair errors
 - knowledge used to fill in gaps, constrain alternatives, correct errors (slower)

As Processing Effort Increases

Extreme demand: Accuracy drops

But if accuracy is remains high, increased processing effort (cognitive load is manifested by

- Reduced working memory span
- Slower speed

Working memory

- System responsible for the PROCESSING and temporary STORAGE of information
 - during the performance of all complex cognitive tasks, including comprehension
 - assumed to have a limited capacity that must be shared between processing and storage (Baddeley, 1976)

M

Effect of Simulated Auditory Aging on Working Memory Span

Measuring Working Memory: Why and How.... Off-line

If task demand does not exceed capacity, would recognition accuracy be reduced? If task demand does exceed capacity, would recognition accuracy be reduced? If WM measured on-line, would it correlate with performance (accuracy, speed, effort)?

Adapted from Pichora-Fuller, 2006 Phonak Conference

M

Word Span with NU6s (quiet)

(Smith, Pichora-Fuller, Alexander, Wilson, & Anderson, in prep)

Word	Recognition	Judgment	Recall
RICE	✓	✓	Rice, √
FIST	X, Fish	✓	Fish, √
RISK	✓	√	Risk, √
GRACE	\checkmark	✓	Grace, √
·			
BAR	X, Car	X	Card, X
SHOVE	√	X	Shove, √
WHAT	✓	✓	What, √
MOON	✓	✓	Moon, √
		Ţ	
CALF	✓	√	Rice, √
THAT	√	✓	That, √

OHL

Split group based on median span >3.67 HIGH <3.33 LOW

Adding task demand affects LOW span group at smaller set size

Correlations for OHL

	Recognition	Span
Recognition	-	ns
Span	ns	-

Auditory Measures	Recognition	Span
PTA or HFPTA	r = .7077 (p < .001)	ns
WIN 50% Point	r =82 (p < .001)	ns

Memory Measures	Recognition	Span
Digit Span-Forward	ns	ns
Digit Span-Backward	ns	r = .28 (p = .03)
Digit Span-Sequencing	ns	r = .34 (p = .009)
Auditory Free Recall	r = .31 (p = .007)	r = .35 (p = .007)
Visual Free Recall	ns	r = .42 (p = .001)
MoCA (total)	ns	r = .37 (p = .004)

Outline

- 1. More than one way to recognize a word
- 2. Cognitive aging, compensation, training
- 3. Implications for aural rehabilitation

Possible Cognitive Factors in Aging

Knowledge is preserved and context is helpful

BUT Processing is less efficient

- Working memory
- Divided attention
- Speed of information processing
 - □ If sensory (or motor) abilities are reduced then cognitive processing demands could increase

(Schneider, B.A., Pichora-Fuller, M.K., & Daneman, M. (2010). The effects of senescent changes in audition and cognition on spoken language comprehension (pp. 167-210). In S. Gordon-Salant, R. D. Frisina, A. Popper, & D. Fay (Eds), *The aging auditory system: Perceptual characterization and neural bases of presbycusis*, Springer Handbook of Auditory Research. Springer: Berlin)

Use of Context

Older = younger jittered in LOW-CONTEXT

Equates for quality of input for bottom-up processing

Older better than younger jitter in HIGH-CONTEXT

More expert at top-down processing

Benefit from Context

Older benefit from context more than younger.

2-3 dB SNR

Increasing Acoustic Distortion of Context Slows Lexical Decision for Later Intact Word

Goy, H. Pelletier, M., Coletta, M., & Pichora-Fuller, M.K. (submitted).

Facilitation by Congruent Context is Reduced by Signal Distortion but is Greater for Older than Younger Adults

Speed (and Ease) of Listening

- Signal quality affects listening:
 - □ Faster if signal is intact
 - □ Slower if signal is distorted or degraded or noisy
 - □ Could be influenced by hearing aid processing
- Context affects listening:
 - □ Faster if context is semantically congruent
 - □ Slower if context is semantically incongruent
 - Could be influenced by AR training

M

Context, Intelligibility & Brain Activation

(Obleser, Wise, Dresner & Scott, 2006)

High vs. low predictability at intermediate signal quality for younger adults listening to distorted (noise-vocoded) SPIN sentences

Activation to **HIGH-CONTEXT** > **LOW-CONTEXT** speech

Various areas activated including the left dorsolateral prefrontal cortex (working memory & semantic processing)

Cognitive Neuroscience of Aging

- Same performance achieved but with different processing (amounts of brain activation and extents of networks)
- More widespread activation ~ brain reorganization
 - Young brain activity more lateralized
 - □ Old brain activity more distributed
- HAROLD: Hemispheric asymmetry reduction in older adults (Cabeza, 2002)
- PASA: Posterior-anterior shift in aging
 (Davis, Dennis, Daselaar, Fleck & Cabeza, 2008)

Deterioration or compensation?

Compensation

(Grady, 2012, Nature Reviews Neuroscience, 13, 491-505)

Task Demands

(Pichora-Fuller & Jamieson, 2012)

Task 1 depends mostly on auditory capacity (e.g., detecting a sound).

Task 2 depends more on cognitive capacity (comprehending a lecture).

Task 3 depends even more on cognitive capacity (dividing attention during group conversation).

P1 is a person with normal hearing and slightly below average cognitive capacity who has sufficient combined capacities to succeed on all 3 tasks.

P2 is a person with hearing loss and high cognitive capacity who is able to succeed on all 3 tasks by using cognitive capacity (world and linguistic knowledge) to help compensate for deficits in auditory processing.

Cognitive Theories and Training

- Cognitive Compensation Hypothesis
 - (Li, Krampe, & Bondar, 2005; Li & Lindenberger, 2002)
 - declining sensory (and motor) functions are compensated by higher-level cognitive and attentional processes
- CRUNCH Compensation-Related Utilization of Neural Circuits Hypothesis

(Reuter-Lorenz & Cappell, 2008)

- additional brain regions are recruited by older adults when capacity limits are reached in a given task or combined tasks.
- STAC Scaffolding Theory of Aging and Cognition

(Park & Reuter-Lorenz, 2009)

□ there is the potential to enhance such compensation by training.

Mild Cognitive Impairment

(e.g, Troyer & Murphy, 2007)

- Active lifestyle ~ risk of future dementia
 - □ Cognitive engagement
 - Tasks involving problem-solving, decision-making, learning, remembering new information
 - □ Social interaction
 - Rich social stimulation and active social network
 - Participating in group activities and interactions
 - Physical activity
 - Some activities are done in groups, with music
- Enriched environments
- Group interventions
- Communication-related disorders???

Outline

- 1. More than one way to recognize a word
- 2. Cognitive aging, compensation, training
- 3. Implications for aural rehabilitation

Implications for AR

- AR could facilitate brain reorganization
- Approaches based on compensation
 - □ Use of context
 - □ Strategies ~ task demands (listening goals)
- Actively engage older adults with HL in re-learning how to listen and understand
 - □ In realistic environments
 - Talkers
 - Acoustic and social situations
 - □ Using technologies
 - Multi-modal, sensori-motor

Training

- Time on task
 - Interesting
 - □ Reinforcing
 - Fun
 - Social support
 - Build self-efficacy
- Complexity
 - □ Generalization to everyday life
- Health promotion context
 - Stay active, stay healthy
 - Value of communication

Everything Old is New Again

Analytic vs Synthetic Training?

Signal vs Meaning....

Phonemes vs Discourse....

Bottom-up vs Top-down.....

Pichora-Fuller, M.K. (in press for 2013). Auditory and cognitive processing in audiologic rehabilitation. In J. Spitzer & J. Montano (Eds.), *Adult audiologic rehabilitation: Advanced practices (second edition).* Plural Publishing, San Diego, CA.

http://www.youtube.com/watch?v=Ctev1Yg9XWI

More conferences

Linkoping, Sweden in June 2013

2nd International Conference on Cognitive Hearing Science for Communication

http://www.chscom2013.se/

Indiana in October 2013

4th Aging and Speech Communication Conference

http://www.indiana.edu/~ascpost/program.htm

What Changes in Cognitive Development over the Lifespan? (Craik & Bialystock, 2008)

Younger

Older