Outcomes of Open Canal vs. Traditional Custom Hearing Aids: A Randomized Controlled Trial

Advances in Audiology
Tomorrow's Solutions for Today's Challenges
2nd - 5th of December 2012

Session II: Factors in Hearing Instrument Adoption \& Use
Presented by:
Theresa Chisolm, Ph.D.

Acknowledgements

- This material is the result of work supported by VA RR\&D Merit Review Grant C6028R "Evaluation of Open-Canal and Traditional CustomFit Hearing Aids"
- The contents do not represent the views of the Department of Veterans Affairs or the United States Government

Impetus for Study

S. Kochkin. MarkeTrak VIII: 25 year trends in the hearing health market. The Hearing Review, Vol. 16 (11), October 2009, pp.12-31.

Hearing Aids

Primary Treatment Option

Low Prevalence of Hearing Aid Use Only 22\% of those over the Age of $50 \mathrm{y} / \mathrm{o}$ with HL > 25 dB HL use Hearing Aids Chien \& Lin (2012)

Table. Prevalence and Number of Individuals 50 Years or Older With Hearing Loss ${ }^{\text {a }}$ Using Hearing Aids in the United States ${ }^{\text {b }}$

Variable	Prevalence of Hearing Aid Use Among Adults With Hearing Loss ${ }^{\text {a }} \geq 25 \mathrm{~dB}, \%(95 \% \mathrm{CI})^{\text {c }}$						No. With Hearing Loss ${ }^{\text {a }}$ $\geq 25 \mathrm{~dB}$ (in Millions)
	Sex		Hearing Loss Severity d		Total		
	Male	Female	Mild ($25-40 \mathrm{~dB}$)	Moderate or Greater (>40 dB)	Overall Prevalence of Hearing Aid Use	No. With Hearing Aids (in Millions)	
Age, y							
50-59	4.3 (0-9.5)	4.5 (0-13.5)	2.7 (0-6.6)	11.8 (0-27.5)	4.3 (0-8.8)	0.2	4.5
60-69	7.3 (2.5-12.1)	7.2 (1.4-13.0)	2.6 (0-5.2)	23.9 (10.6-37.2)	7.3 (3.6-10.9)	0.4	6.1
70-79	21.1 (14.5-27.6)	12.7 (6.0-19.5)	3.4 (0.3-6.5)	47.8 (37.0-58.6)	17.0 (12.4-21.6)	1.5	8.8
≥ 80	28.1 (20.3-35.9)	17.9 (11.2-24.7)	3.4 (0-7.7)	35.7 (28.7-42.7)	22.1 (18.5-25.8)	1.6	7.3
Estimated total N . of individuals with hearing aids and with hearing loss (in millions)						$3.8{ }^{\text {d }}$	26.7

${ }^{\text {a }}$ Hearing loss was defined as a speech frequency pure tone average of hearing thresholds at $0.5-, 1-, 2-$, and $4-\mathrm{kHz}$ tones presented by air conduction in the better hearing ear of 25 dB or greater.
b Data were derived from the 1999-2006 National Health and Nutrition Examination Survey.
${ }^{\text {c }}$ All values represent prevalence percentage unless otherwise noted.
${ }^{\mathrm{d}}$ Numbers do not sum to group total because of rounding.

12.4\% of Adults Who Try Hearing Aids

Kochkin S. MarkeTrak V: Why my hearing aids are in the drawer: The consumer's perspective.

Hear Jour. 2000;53(2):34-42.

Factors Associated with Non-Use and

 Discontinued Use of Traditional Hearing Aids- Poor fit, comfort and/or cosmetics
- Lack of ease of use
- "A plugged up sensation" related to occlusion
- Poor sound quality of own voice
- Negative side effects of whistling feedback
- Difficulty understanding speech in noise

Popularity of Open Ear Fittings

Improved comfort and cosmetics

Reduced effects of occlusion
May reduce the amount of under and un-use of hearing aids

Potential Limitations/Trade-Offs

Open Ear (OE)

Traditional Custom (TC)

- Maximum low- and high-frequency gain available may be less in OE than in TC fitting
- Difficulty in meeting targets
- Reduced speech recognition
- Decreases in Directional Microphones benefits with OE fittings may occur due to decrease in low-frequency gain

What would you fit?

Our Team

- Gene Bratt and Richard Wilson
- Co-Principal-Investigators
- Mia Rosenfeld

- Study Coordinator/ Research Audiologist
- Theresa Chisolm, Rachel McArdle, Todd Ricketts, Sherri Smith
- Co-Investigators
- Ginny Alexander, Elizabeth Talmage, Erin Coomes
- Research Audiologists

Multi-Site Study

James H. Quillen, VAMC,

Nashville VA Medical Center

Mt. Home, TN

VAHC - Bay Pines, Florida

3-Period Crossover Design

3-Period Crossover Design

Baseline

3-Period Crossover Design

Rank Preferences for Hearing Aid Styles

\#1 Ranked Style to be Used at End of Study
Protocol

Participant Characteristics ($n=263$)

- 255 males, 8 females
- Roughly symmetrical (PTA within 15 dB) SNHL
- 139 New Hearing Aid Users
- 16 (11.5\%) tried hearing aids in last 10 years but had rejected them
- 124 Experienced Hearing Aid Users
- 1-30 years, mean $=7.82$ years
- Age
- New Hearing Aid Users: $\quad 66.35$ years (SD = 8.69)
- Experienced Hearing Aid Users: 70.33 years ($\mathrm{SD}=8.49$)

Recruited to fit into 1 of 3 Hearing Loss Groups

Group 1 Fitting Range $n=61$ (43 New; 18 Experienced)

Fitting Range 1

Group 2 Fitting Range n = 62 (39 New; 23 Experienced)

```
At least }1\mathrm{ threshold in dark shaded
region for 500Hz and/or 1000Hz
```

Fitting Range 2

V1 a space is needed between 500 and Hz ; likewise between 1000 and Hz VHAMOUWI LSOR; 13.02.2010

Group 3 Fitting Range n = 82 (28 New; 54 Experienced)

Group 4 (Other) n = 58 (29 New; 29 Experienced)

Hearing Aids

1. Maintaining consistency of circuit type across the three styles
2. Feedback control system that would maximize ability to meet/approximate target in open fit configuration.

- Traditional Custom
- Starkey Destiny 1200

Hearing Aids

- $O E_{\text {RITA }}$
- Destiny 1200 mini or full BTE, fit with slim tubing and open dome
- $\mathrm{OE}_{\text {RITE }}$
- Zon .7, fit with open dome

Hearing Aids

$>$ Set to dynamic mode, other noise reduction features disabled
$>$ Any manual controls disabled
$>$ Telephone program options individually selected
$>$ Goal: Match REAR (65dB input, DigSpeech) to NALNL1 REAR targets

Best Fit vs. User Fit

$>$ Some patients prefer gain settings lower than NALNL1 target
$>$ In these cases, gain reductions made to the patient preferred levels
> Documented "best fit" (closest to NAL-NL1 prior to feedback) and "user fit" (as worn)
$>$ Preliminary data for Best Fit ($n=111$ participants)
\rightarrow Target ■RITE \notin RITA $*$ TC

\rightarrow Target \quad RITE $_$RITA $*$ TC

\rightarrow Target \quad RITE \star RITA $* T C$

- Target ■RITE \triangle RITA $* T C$

- Target \quad RITE $_$RITA $* T C$

Group 1 REAR

Group 2 REAR

Group 3 REAR

Group 4 REAR

All 3 Hearing Aid Styles

- Able to fit a wide range of hearing loss with appropriate match to target
- Can match to target through 3000 Hz
- Open-fit BTE's may undershoot at 4000 Hz , we could frequently meet target even with substantial hearing loss

Outcome Measures

>Subjective

>Style Preference Survey (SPS; Smith, et al., $J A A A$, in press)

Objective

- Words-in-Noise (WIN; Wilson 2003)
-Aided SNR-50
>Preferred Hearing Aid Style

Subjective Outcomes

Style Preference Survey

Style Preference Survey

- 35 items encompassing five subscales related to:
- (1) Fit, Comfort, and Cosmetics
- (2) Localization
- (3) Ease of Use
-(4) Subjective Occlusion/Own Voice Effects
- (5) Feedback

Style Preference Survey

Please read each question carefully. Circle a number from 0 to 10 that best represents your agreement with the statement made.
If you completely disagree with the statement, then circle 0.

Completely Disagree			Neutral				Completely Agree				
0	1	2	3	4	5	6	7	8	9	10	

If you completely agree with the statement, then circle 10.

Style Preference Survey

If you neither agree or disagree, then circle 5.

Style Preference Survey

Style Preference Survey

- 35 items encompassing five subscales related to:
- (1) Fit, Comfort, and Cosmetics
- (2) Localization
- (3) Ease of Use
-(4) Subjective Occlusion/Own Voice Effects
- (5) Feedback

Style Preference Survey

- 35 items encompassing five subscales related to:
- (1) Fit, Comfort, and Cosmetics
- (2) Localization
- (3) Ease of Use
-(4) Subjective Occlusion/Own Voice Effects
-(5) Feedback

Style Preference Survey

- 35 items encompassing five subscales related to:
- (1) Fit, Comfort, and Cosmetics
- (2) Localization
- (3) Ease of Use
-(4) Subjective Occlusion/Own Voice Effects
- (5) Feedback
- No significant main effects or interactions
- Feedback algorithms effective

Repeated Measures ANOVAs

1 Within Groups Factor: Hearing Aid Style
2 Between Groups Factors: Hearing Loss Group
Hearing Aid Experience

Fit, Comfort, Cosmetics

SPS: Fit, Comfort, \& Cosmetics

SPS: Fit, Comfort, \& Cosmetics

SPS: Fit, Comfort, \& Cosmetics

SPS: Fit, Comfort, \& Cosmetics

SPS: Fit, Comfort, \& Cosmetics

SPS: Fit, Comfort, \& Cosmetics

SPS: Fit, Comfort, \& Cosmetics

[Style: $\left.F(2,510)=60.58, p=.000, \eta \rho^{2}=.192\right]$

SPS: Fit, Comfort, \& Cosmetics

[Style: $\left.F(2,510)=60.58, p=.000, n \rho^{2}=.192\right]$

SPS: Fit, Comfort, \& Cosmetics

[Style: $\left.F(2,510)=60.58, p=.000, n \rho^{2}=.192\right]$

SPS: Fit, Comfort, \& Cosmetics

[Style: $\left.F(2,510)=60.58, p=.000, n \rho^{2}=.192\right]$

SPS: Fit, Comfort, \& Cosmetics

[Style: $\left.F(2,510)=60.58, p=.000, n \rho^{2}=.192\right]$

Fit, Comfort, Cosmetics

No other significant findings

Localization

SPS: Localization

[Style: $\left.F(2,510)=31.40, p=.000, n \rho^{2}=.110\right]$

SPS: Localization

[Style: $F(2,510)=31.40, p=.000, \eta \rho^{2}=.110$]

SPS: Localization

[Style: $F(2,510)=31.40, p=.000, \eta \rho^{2}=.110$]

SPS: Localization

[Style: $F(2,510)=31.40, p=.000, \eta \rho^{2}=.110$]

Localization

No other significant findings

Ease of Use

SPS: Ease of Use

[Style: $\left.F(2,510)=42.39, p=.000, n \rho^{2}=.143\right]$

SPS: Ease of Use

[Style: $\left.F(2,510)=42.39, p=.000, n \rho^{2}=.143\right]$

SPS: Ease of Use

[Style: $\left.F(2,510)=42.39, p=.000, n \rho^{2}=.143\right]$

SPS: Ease of Use

[Style: $\left.F(2,510)=42.39, p=.000, \eta \rho^{2}=.143\right]$

Ease of Use

No other significant findings

Subjective Occlusion/Own Voice

Significant Main Effect of Style
Significant Main Effect of Hearing User Status

SPS: Subjective Occlusion/Own Voice

 Style X User Experience$\left[F(1,255)=11.86, p=.000, n \rho^{2}=.044\right]$

SPS: Subjective Occlusion/Own Voice

Style X User Experience
$\left[F(1,255)=11.86, p=.000, \eta \rho^{2}=.044\right]$

SPS: Subjective Occlusion/Own Voice

Style X User Experience
$\left[F(1,255)=11.86, p=.000, \eta \rho^{2}=.044\right]$

SPS: Subjective Occlusion/Own Voice

Style X User Experience
$\left[F(1,255)=11.86, p=.000, n \rho^{2}=.044\right]$

SPS: Subjective Occlusion/Own Voice

 Style X User Experience$\left[F(1,255)=11.86, p=.000, \eta \rho^{2}=.044\right]$

SPS: Subjective Occlusion/Own Voice

Style X User Experience
$\left[F(1,255)=11.86, p=.000, \eta \rho^{2}=.044\right]$

SPS: Subjective Occlusion/Own Voice

Style X User Experience
$\left[F(1,255)=11.86, p=.000, \eta \rho^{2}=.044\right]$

SPS: Subjective Occlusion/Own Voice

Style X User Experience
$\left[F(1,255)=11.86, p=.000, n \rho^{2}=.044\right]$

Subjective Occlusion/Own Voice

Main Effect of Style
Main Effect of Hearing Status
Interaction of Style x Hearing Status
No other factors significant

Summary

Subscale	Style	HL Group	User Status	Interactions
Fit, Comfort, Cosmetics	TC $<$ OE RITA $<$ RITE	NS	NS	NS
Localization	$\mathrm{TC}<\mathrm{OE}$ RITA $=$ RITE	NS	NS	NS
Ease of USE	$\mathrm{TC}<\mathrm{OE}$ RITA $=$ RITE	NS	NS	NS
Subjective Occlusion	TC $<$ OE RITA $=$ RITE	NS	New $<$ Experienced	New $<$ Experienced ONLY for TC
Feedback	NS	NS	NS	NS

Summary

Subscale	Style	HL Group	User Status		Interactions
Fit, Comfort, Cosmetics	TC $<$ OE RITA $<$ RITE	NS	NS	NS	
Localization	TC $<$ OE RITA $=$ RITE	NS	NS	NS	
Ease of USE	TC $<$ OE RITA $=$ RITE	NS	NS	NS	
Subjective Occlusion	TC $<$ OE RITA $=$ RITE	NS	New $<$ Experienced	New $<$ Experienced ONLY for TC	
Feedback	NS	NS	NS	NS	

Objective Outcome Measures

Words-in-Noise Test

Words-in-Noise Test (WIN)

> 35 NU No. 6 monosyllabic words (female speaker)
> Presented in soundfield at 0° azimuth
> Multitalker babble
$>$ Presented at 180° azimuth at 70 dB HL
> Descending paradigm
> 5 words per each of 7 signal-to-babble ratios from 24 -to $0-\mathrm{dB}$ S/N, 4-dB decrements
$>$ Scored in terms of signal-to-noise ratio at the 50\% point (Spearman-Kärber equation)

Example: Say the word voice

WIN Results

WIN Results

Hearing Loss Group

$$
F(3,255)=34.23, p=.000, \eta \rho^{2}=.287
$$

Group 1: $\quad 10.36(\mathrm{SE}=.31)$
Group 2: $\quad 12.34(\mathrm{SE}=.29)$
Group 3: $\quad 14.44$ ($\mathrm{SE}=.26$)
Group 4: $\quad 11.93(\mathrm{SE}=.30)$

WIN Results

HA Experience

$\left.F(1,255)=26.13, p=.000, n \rho^{2}=.093\right]$ New Users 11.51 (SE = .19) Experienced $13.02(\mathrm{SE}=.21)$

WIN

[Style: $\left.F(2,510)=117.68, p=.000, n \rho^{2}=.316\right]$

WIN

[Style: $\left.F(2,510)=117.68, p=.000, \eta \rho^{2}=.316\right]$

WIN

[Style: $\left.F(2,510)=117.68, p=.000, n \rho^{2}=.316\right]$

WIN

[Style: $\left.F(2,510)=117.68, p=.000, n \rho^{2}=.316\right]$

WIN

[Style: $\left.F(2,510)=117.68, p=.000, n \rho^{2}=.316\right]$

Trade-Off

Subjective OE > TC

- Fit, Comfort, Cosmetics
- Localization
- Ease of Use
- Subjective Occlusion

Objective TC > OE

- Speech understanding in noise

Which Drives Patient Preference?

Subjective OE > TC Objective TC > OE

- Fit, Comfort, Cosmetics
- Localization
- Speech understanding in noise
- Ease of Use
- Subjective Occlusion

Preferred Hearing Aid Style

Style	$n=263$	Percent
Traditional Custom		
OE-RITA		
OE-RITE		

Preferred Hearing Aid Style

Style	$n=263$	Percent
Traditional Custom	52	19.7%
OE-RITA		
OE-RITE		

Preferred Hearing Aid Style

Style	$n=263$	Percent
Traditional Custom	52	19.7%
OE-RITA	85	32.3%
OE-RITE		

Preferred Hearing Aid Style

Style	$n=263$	Percent
Traditional Custom	52	19.7%
OE-RITA	85	32.3%
OE-RITE	126	48.0%

BUT....

Without a 3-arm crossover trial, how do you know what style to recommend to your patients?

BUT....

Without a 3-arm crossover trial, how do you know what style to recommend to your patients?

Can you make the decision based on the audiogram?

Does Style Preference Differ as a Function of Hearing Loss Category?

Percentage Preferring Each HA Style within each HL Group

Percentage Preferring Each HA Style within each HL Group

Percentage Preferring Each HA Style within each HL Group

Percentage Preferring Each HA Style within each HL Group

Percentage Preferring Each HA Style within each HL Group

Percentage Preferring Each HA Style within each HL Group

$\square T C \square$ OE-RITA ■OE-RITE

BUT....

Without a 3-arm crossover trial, how do you know what style to recommend to your patients?

Can you make the decision based on hearing aid experience?

Percentage Preferring Each Style as a Function of HA Experience

Percentage Preferring Each Style as a Function of HA Experience

Percentage Preferring Each Style as a Function of HA Experience

Percentage Preferring Each Style as a Function of HA Experience

Percentage Preferring Each Style as a Function of HA Experience

Percentage Preferring Each Style as a Function of HA Experience

BUT....

Without a 3-arm crossover trial, how do you know what style to recommend to your patients?

Can you make the decision based on speech understanding in noise?

Aided or Unaided?

Aided WIN as a Function of Preferred Hearing Aid Style

Aided WIN as a Function of Preferred Hearing Aid Style

Aided WIN as a Function of Preferred Hearing Aid Style

Aided WIN as a Function of Preferred Hearing Aid Style

Aided WIN as a Function of Preferred Hearing Aid Style

Aided WIN as a Function of Preferred Hearing Aid Style

Aided WIN as a Function of Preferred Hearing Aid Style

Aided WIN as a Function of Preferred Hearing Aid Style

BUT....

Without a 3-arm crossover trial, how do you know what style to recommend to your patients?

Can you make the decision based on speech understanding in noise?

Aided or Unaided?

BUT....

Without a 3-arm crossover trial, how do you know what style to recommend to your patients?

Can you make the decision based on speech understanding in noise?

A Ed or Unaided?

Unaided WIN as a Function of Preferred Hearing Aid Style

Unaided WIN as a Function of Preferred Hearing Aid Style

Unaided WIN as a Function of Preferred Hearing Aid Style

Unaided WIN as a Function of Preferred Hearing Aid Style

Unaided WIN as a Function of Preferred Hearing Aid Style

Unaided WIN as a Function of Preferred Hearing Aid Style

Unaided WIN as a Function of Preferred Hearing Aid Style

Unaided WIN as a Function of Preferred Hearing Aid Style

Preliminary Take Home Message

- Measuring Unaided Speech-in-Noise Performance
- Critical to Optimal Amplification Treatment Planning

What would you fit?

Both long-term previous ITE users

Frequency in Hertz (Hz)

Frequency in $\mathrm{Hertz}(\mathrm{Hz})$

Patient 1, 66 years old

Frequency in Hertz (Hz)

Unaided WIN =
+15.2 dB

Rank order: 1-RITE, 2-RITA, 3-TC

Frequency in Hertz (Hz)

Unaided WIN =
+15.2 dB

Patient 2, 77 years old

Frequency in Hertz (Hz)

Unaided WIN =
$=+24.0 \mathrm{~dB}$

Rank order: 1-TC, 2-RITE, 3-RITA

Frequency in Hertz (Hz)

Unaided WIN =
$=+24.0 \mathrm{~dB}$

More traditional open-ear candidates

Frequency in Hertz (Hz)

Frequency in Hertz (Hz)

Patient 3
 Previous ITE user, 67 years old

Frequency in Hertz (Hz)

Final Ranking: 1-RITE, 2-TC, 3-RITA

Frequency in Hertz (Hz)

Patient 4
 42 year old New Hearing Aid User

Frequency in Hertz (Hz)

Final ranking: 1-TC, 2-RITE, 3-RITA

Frequency in Hertz (Hz)

Why did Patient 4 Chose a TC?

- Work situation
- Electrician who could use TC better with safety glasses
- TC felt more secure in his ears - had to remove OE devices in certain work situations (e.g., duct work, maneuvering in tight spaces)

Final Take Home Message

Final Take Home Message

- Open Ear is likely the best way to go for the majority of your patients

Final Take Home Message

- The audiogram alone is not enough for optimal patient management

Final Take Home Message

- It is critical to measure speech-in-noise performance

Final Take Home Message

- Measuring up-front can save you and your patients time!

Final Take Home Message

- Practice Patient-Centered Care!

Final Take Home Message

- Practice Patient-Centered Care!
- Ask your patients about their communication goals and needs

Name :
Audiologist :
Date :

1. Needs Established 2. Outcome Assessed

SPECIFIC NEEDS

Indicate Order of Significance

Understanding while I work as an electrician
 dinner

Talking with Harvey Dillon in the pub
\qquad
\qquad

1. Conversation with 1 or 2 in quie 2. Conversation with 1 or 2 in nolse 3. Conversation with group in quiet 4. Conversation with group in noise 2. Television/Radio a normal volume 6. Familiar speaker in phone 7. Unfamiliar speaker on phone

Final Ability
Person can hear $\mathbf{1 0 \%} \quad \mathbf{2 5} \% \quad \mathbf{5 0} \% \quad \mathbf{7 5} \% \quad 95 \%$
\qquad

$\begin{aligned} & \text { 总 } \\ & 0 \\ & \hline \end{aligned}$			总					$\begin{aligned} & \text { E. } \\ & \\ & 0 \end{aligned}$		
						V				

9. Hear front door bell or knock 10. Hear traffic
11. Increased social contact 12. Feel Embarrassed or stupid 13. Feeling left out 14. Feeling upset or angry 15. Church or meeting 6. Other

Increasing Hearing Aid Adoption \&

 Use
Increasing Hearing Aid Adoption \& Use

In all of those individuals with hearing loss who seek your help

