PLASTICITY AND RE-ORGANIZATION IN THE DEVELOPING AUDITORY BRAIN: EVIDENCE FROM CHILDREN WITH HEARING IMPAIRMENT AND AUDITORY NEUROPATHY

Anu Sharma, Ph.D. University of Colorado at Boulder

Funded by: National Institutes of Health Keck Foundation National Organization of Hearing Research American Hearing Research Foundation

Michael Dorman

Julia Campbell, AuD, Garrett Cardon, Au.D, Amy Nash, Au.D. Phillip Gilley, Ph.D.

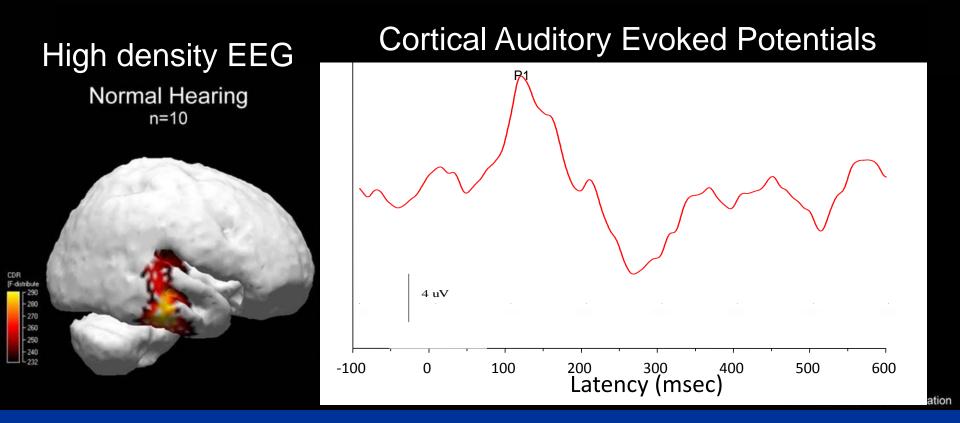
University of Colorado at Boulder

Leif Hergils and Hans Lindehammer	Linkoping Hospital, Sweden				
Andrej Kral, M.D., Ph.D.	Institute for Neurophysiologie, Hamburg, Germany				
Deborah Hayes, Sandra Gabbard,Ph.D. Herman Jenkins M.D., Allison Biever, Au David Kelsall, M.D.					
Peter Roland, M.D. Paul Bauer, M.D. Bob Peters, M.D	Dallas, Texas				
Kathryn Martin, M.S., CCC-A	Callier Center				
Ross Roeser, Ph.D.	for Communication Disorders				
Emily Tobey, Ph.D.					

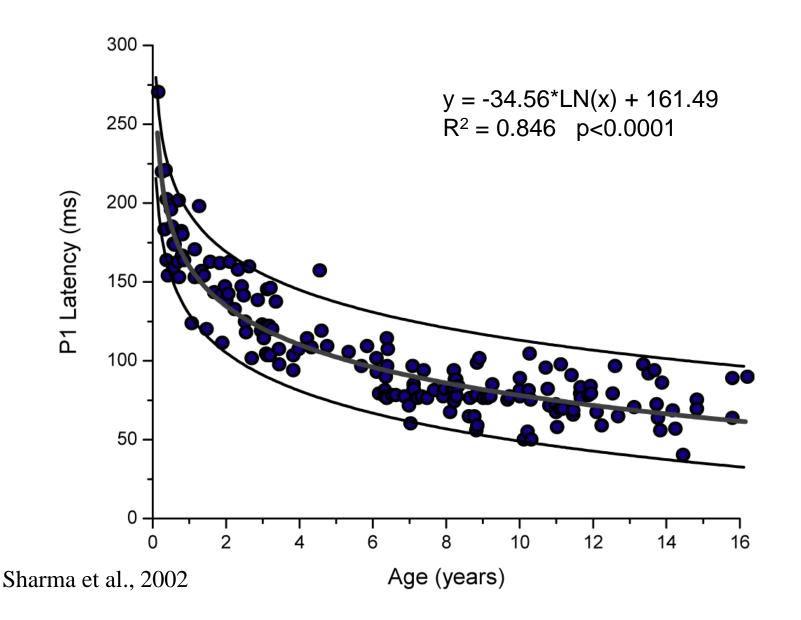
CHILDREN WITH COCHLEAR IMPLANTS

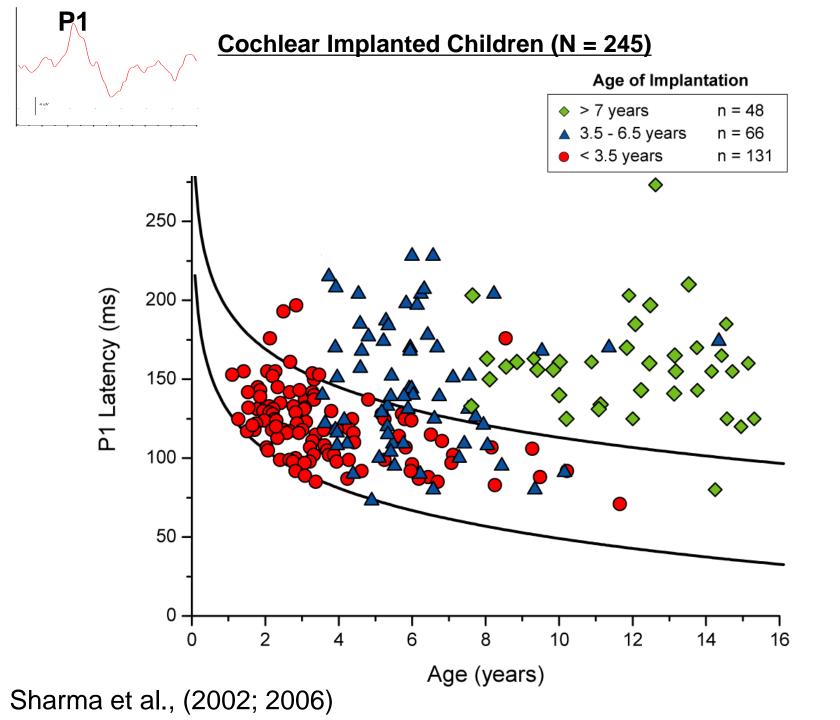
AUDITORY NEUROPATHY SPECTRUM DISORDER (ANSD)

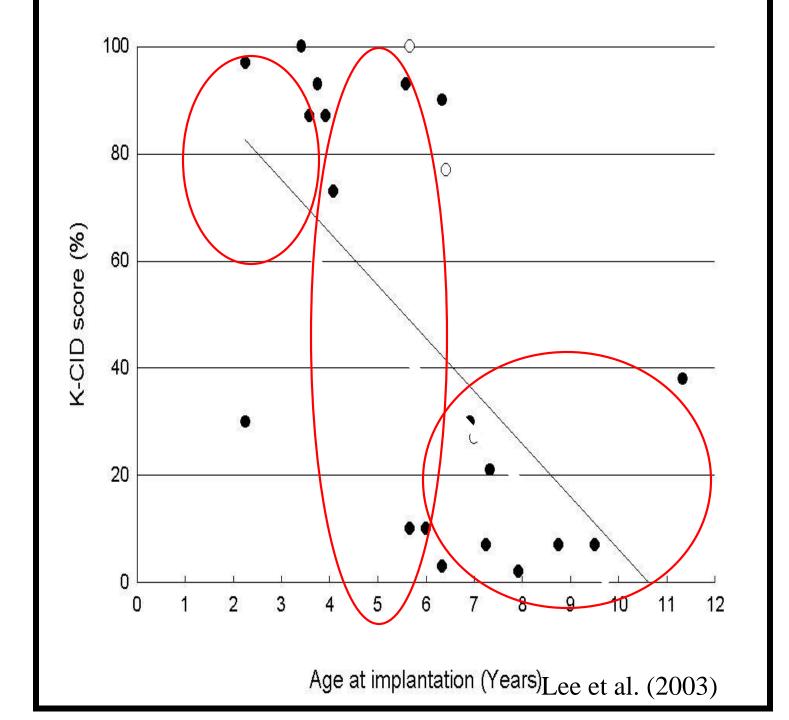
To examine plasticity in the developing central auditory nervous system.


To explore implications for clinical intervention.

The brain's ability to change in structure and function in response to input from the environment.

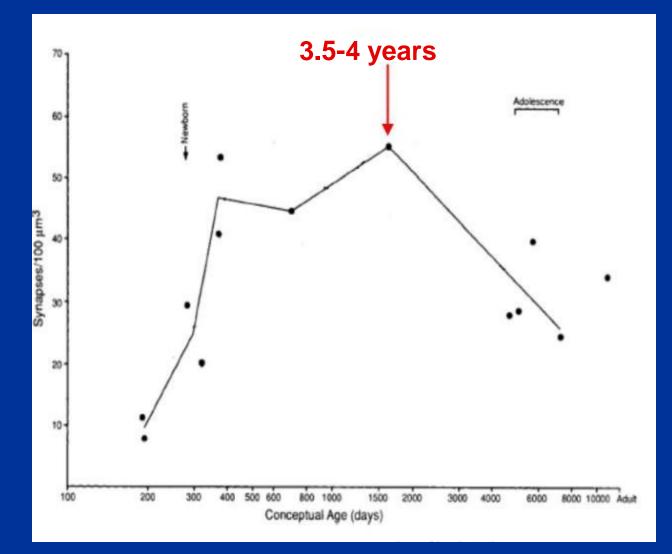

Early in life, neurons begin to form connections or synapses. Proper connections are essential for learning. Plasticity begins before birth and continues into adulthood

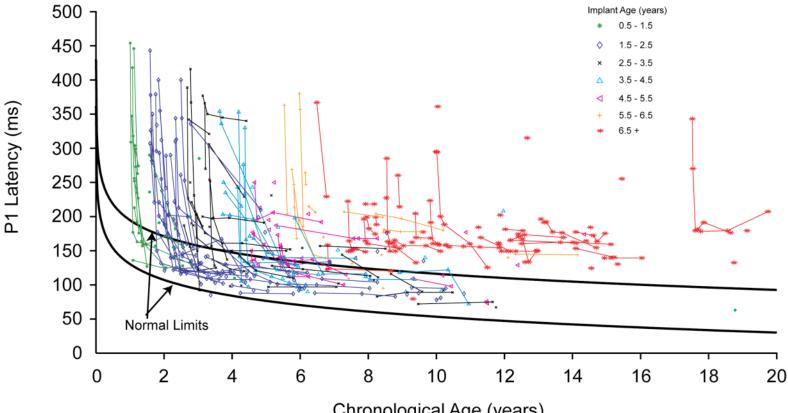

EEG, FMRI, MEG, PET scans



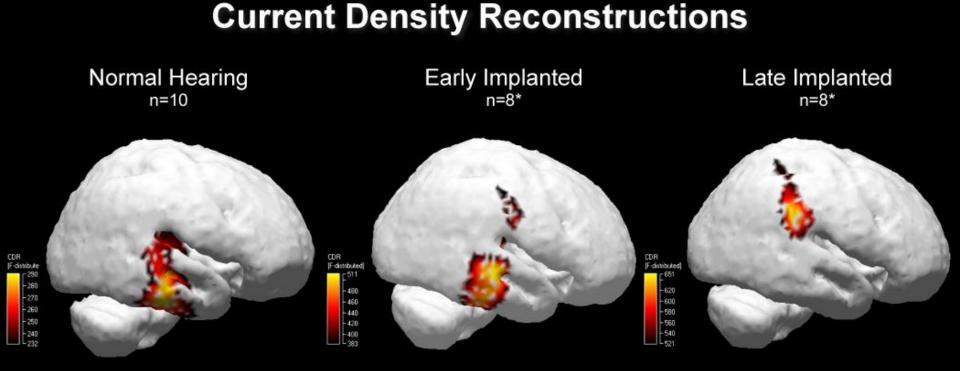
P1 generated in primary and secondary auditory cortex

Normal Hearing Children (N=190)




There is a sensitive period of 3.5 years during which implantation takes place into a highly plastic auditory cortex.

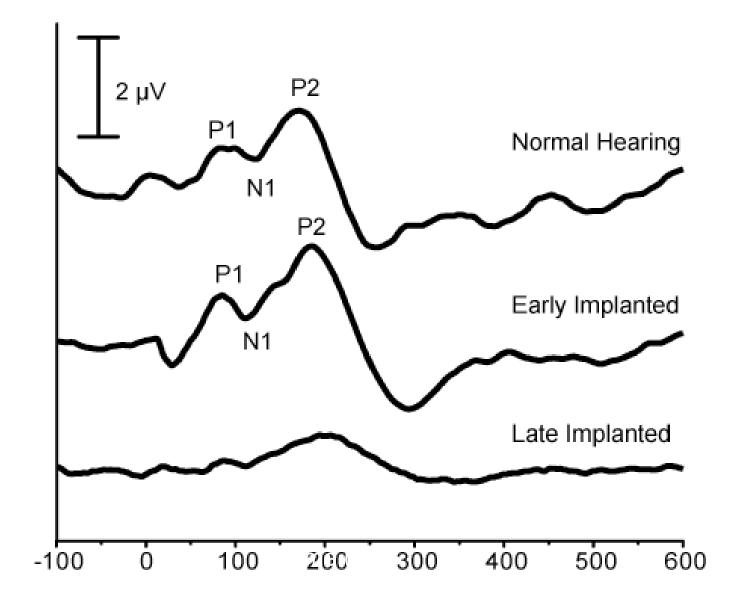
Synaptic Density in Auditory Cortex

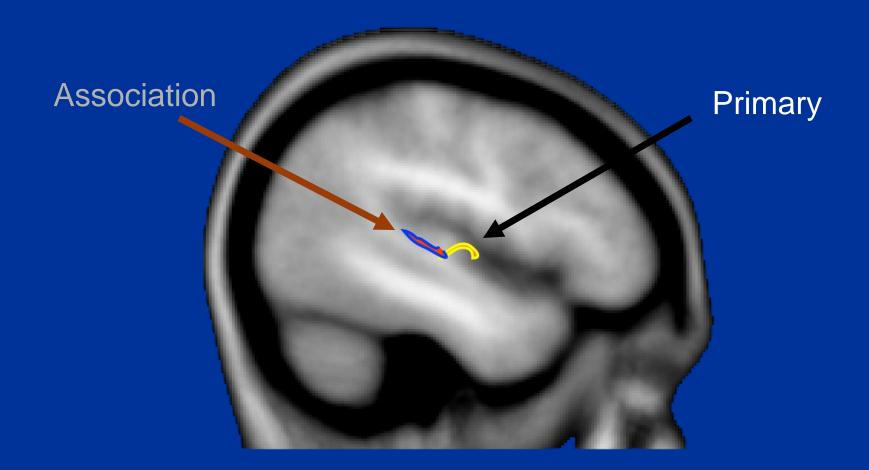

Huttenlocher and Dhabolkar (1997)

Cochlear Implanted Children: Individual Developmental Trajectories n=(231)

Chronological Age (years)

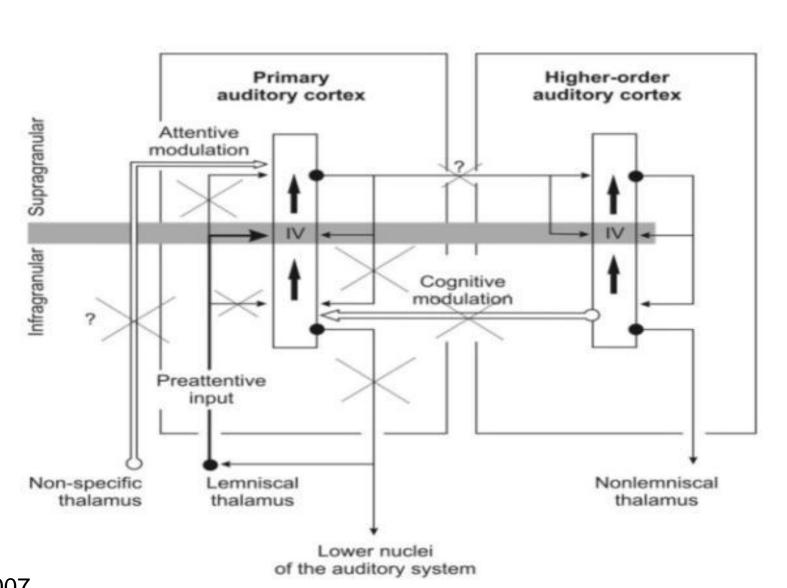
Sharma et al., 2007




* Corrected for ear of stimulation

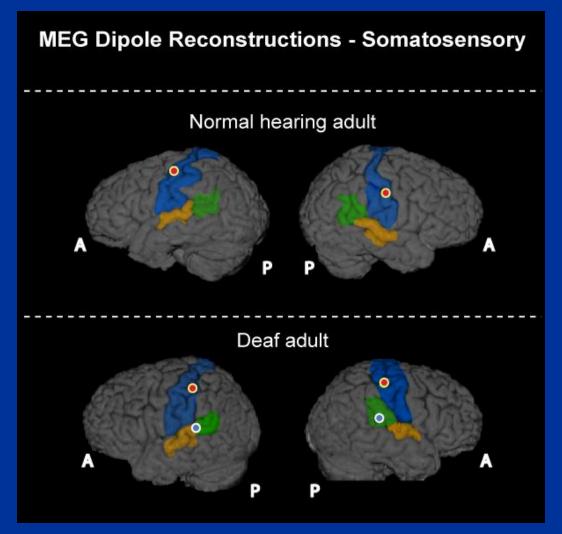
Right ITG Bilateral STS Right ITG Contralateral STS Contralateral Parieto Temporal

Gilley, Sharma, Dorman, 2008


Age-matched groups of children (n=26)

Partial or Complete Decoupling between Primary & Higher Order

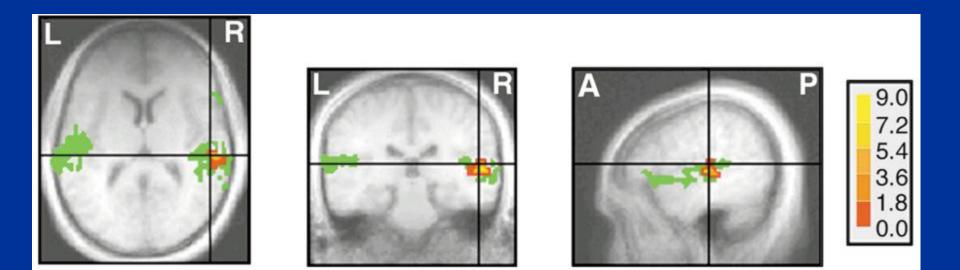
<u>Cortex</u>


Kral, 2007

If proper auditory stimulation is not provided then there may be a disconnection between areas of the brain which connect sound with meaning.

These children will have difficulty learning oral language.

Compensatory or Maladaptive plasticity: Cross Modal Re-organization


CROSS-MODAL PLASTICITY: SOMATOSENSORY-AUDITORY

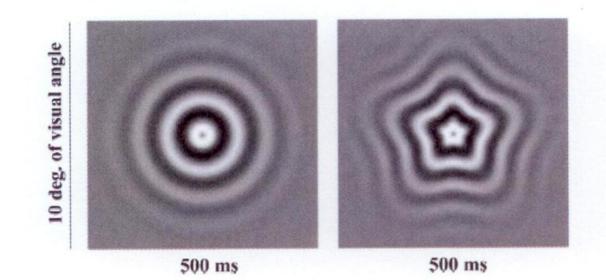
Sharma et al., 2007

CROSS-MODAL PLASTICITY: VISUAL-AUDITORY

fMRI activity in deaf adults in response to visual stimuli

Finney et al., 2001

Visual activity in temporal cortex at STS


If auditory stimulation is not delivered in a timely fashion, then areas of the auditory cortex will reorganize to process stimuli from other sensory modalities. Does cross-modal plasticity affect outcome?

3378 Brain (2006), 129, 3376–3383

Table I Clinical profile of CI patients

Subject	Sex	Age	Age at onset of deafness (years)	Cause of deafness	Degree of loss (dB threshold)	Deaf. duration (years)	CI duration (years)	Side of CI	Speech recognition with the CI (%)	Communication
SI	Μ	21	3	Unknown	Left = 118 Right = 105	16	2	L	73	Oral + lip-reading
S2	F	52	47	GSjogren syndrome	Left = 110 Right = 105	2	3	R	98	Oral + lip-reading
S3	Μ	37	12–25 (progressive)	Hereditary	Left = 113 Right = 113	11-24	1	L	80	Oral + lip-reading
S4	F	42	27	Unknown	Left = 110 Right = 87	13.5	1.5	L	92	Oral + lip-reading
S5	F	18	0–15 (progressive)	Hereditary	Left = 93 Right = 105	I-16	2	R	85	Oral + lip-reading
S6	Μ	54	30–50 (progressive)	Hereditary	Left = 108 Right = 107	2–22	2	R	82	Oral + lip-reading
S7	F	25	0	Hereditary	Left = 107 Right = 107	23	2	R	92	Oral + lip-reading
S8	F	23	2	Meningitis	Left = 100 Right = 100	18	3	R	0	Sign language + lip-reading
S9	F	50	5	Chronic otitis media	Left = $ 18$ Right = $ 15$	44	1	R	0	Sign language + lip-reading
S10	F	41	2–12 (progressive)	Meningitis	Left = 117 Right = 117	28–38	1	R	0	Sign language + lip-reading
SII	Μ	18	0	Hereditary	Left = 97 Right = 93	16	2	L	0	Sign language + lip-reading
S12	Μ	62	10	Meningitis	Left = 113 Right= 115	52	1	L	0	Sign language + lip-reading
S13	Μ	49	0	Hereditary	Left = 105 Right= 110	47	2	L	0	Sign language + lip-reading

Visual Stimuli

Fig. I High contrast sinusoidal concentric grating (0.8 c/deg), subtending 10 deg², followed, 500 ms after onset, by a similar grating radially modulated in frequency.

Brain (2006), 129, 3376-3383 3381 **Good performers** Controls **Poor performers** 80 Fz Fz 848 Cz a CI 548 Or Oz Or. 510 T5 T5 T5 5.00 228 ms 244 ms 228 ms T6 TS T6 SUN 5 11 DUY. 5.0 µV 0.0 uV 5.0 UV 0.0 µV 8 0.0 µV 5.0 µV . 8 **Poor performers - controls** Good performers - controls Fr | Fz 05 Cz SEV 544

Fig. 3 Top: Waveforms for five electrodes (Fz, Cz, Oz, T5, T6) next to topographical maps of the mean voltage amplitudes (µV-see middle colour bar) in good performers (left), controls (middle) and poor performers (right) groups, at the maximum amplitude of the Oz P2 component (see blue vertical line on the curves at left side of each map). Bottom: Subtraction waves next to topographical maps representing t-statistics of the differences between the good performers and controls (left) as well as the poor performers and controls (right).

2.1 µV

248 ms

0

-2.1 µV

Or 541 TSA

T6

S pV

278 ms

8

-2.1 µV

2.1 uV

Visual processing after cochlear implants

0t

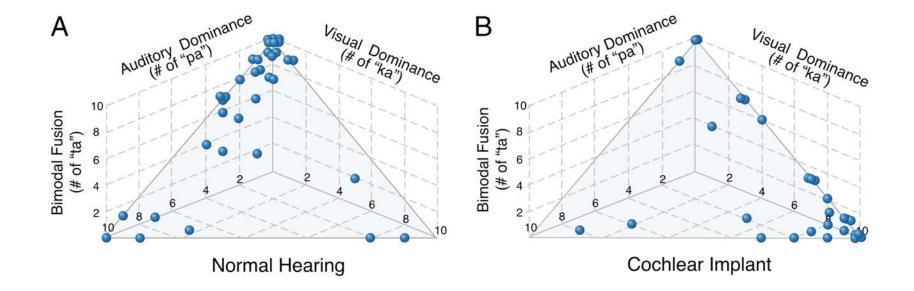
T5

T6 .

SUV

Cross-modal plasticity appears to be correlated to outcome.

128 channel high density EEG net Clinically feasible high-density EEG testing

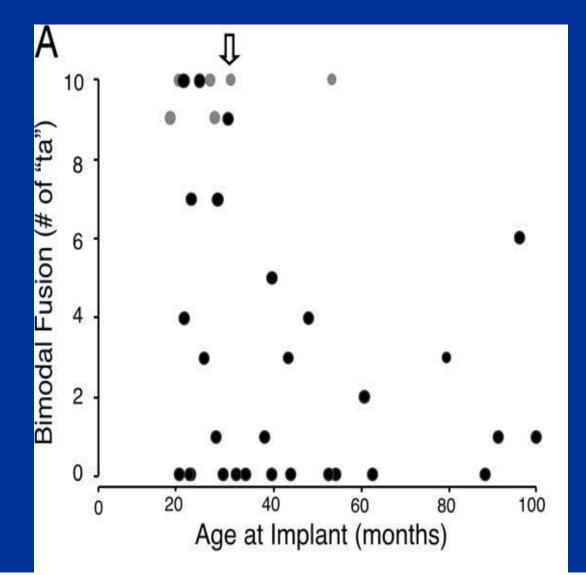

Photo courtesy EGI

Due to proprietary information contained on this slide, you will not be able to view it. Thank you for your understanding. How does cross modal reorganization affect integration across auditory and visual modalities?

McGurk Effect

Auditory-Visual Fusion

e.g., hear /pa/, see /ka/ perceive /ta/ Responses of individual subjects to the incongruent auditory-visual/pa/ka/stimulus (McGurk test). "ta" responses indicate audiovisual fusion, "pa" responses indicate auditory dominance, and "ka" responses indicate visual dominance.



Schorr E A et al. PNAS 2005;102:18748-18750

©2005 by National Academy of Sciences

Late-implanted children show deficits in auditory-visual integration

Schorr, Efrat A. et al. (2005) Proc. Natl. Acad. Sci. USA 102, 18748-18750 A S Copyright ©2005 by the National Academy of Sciences

There is a sensitive period for optimal performance with the cochlear implant in congenitally deaf children.

Deafness that continues beyond these sensitive periods results in cortical reorganization.

Cortical re-organization typically results in poor outcomes for oral language learning.

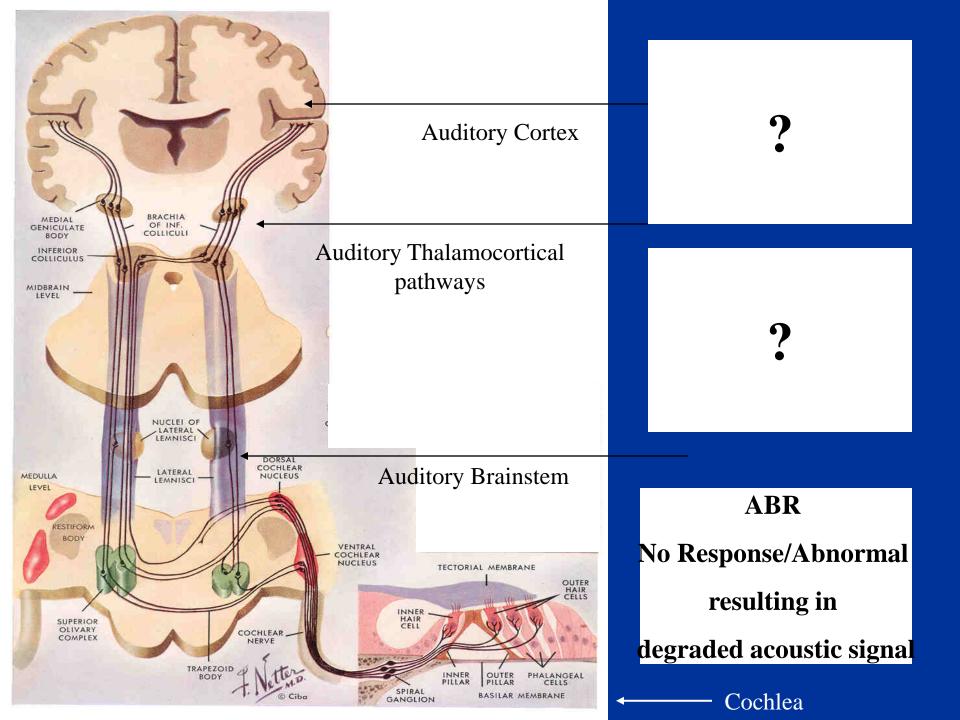
AUDITORY NEUROPATHY/ DYS-SYNCHRONY (AN/AD)

AUDITORY NEUROPATHY SPECTRUM DISORDER (ANSD)

DEMOGRAPHICS

<u>INCIDENCE-</u> 10% -15% of children with sensorineural hearing loss.

Sininger, Hood, Berlin, Uus. (Talaat et al., 2009, Kirkhim et al., 2008)


Characteristics of ANSD: Summary

Evidence of outer hair cell function in the cochlea

- Present OAE's
- Cochlear microphonic present in ABR
- Evidence of neural impairment
- ABR is absent/abnormal
- Acoustic Stapedial reflexes are absent/abnormal
- Audiogram ranges from normal to profound, can fluctuate
- No correlation between speech perception skills and audiogram

• High inter and intrasubject variability

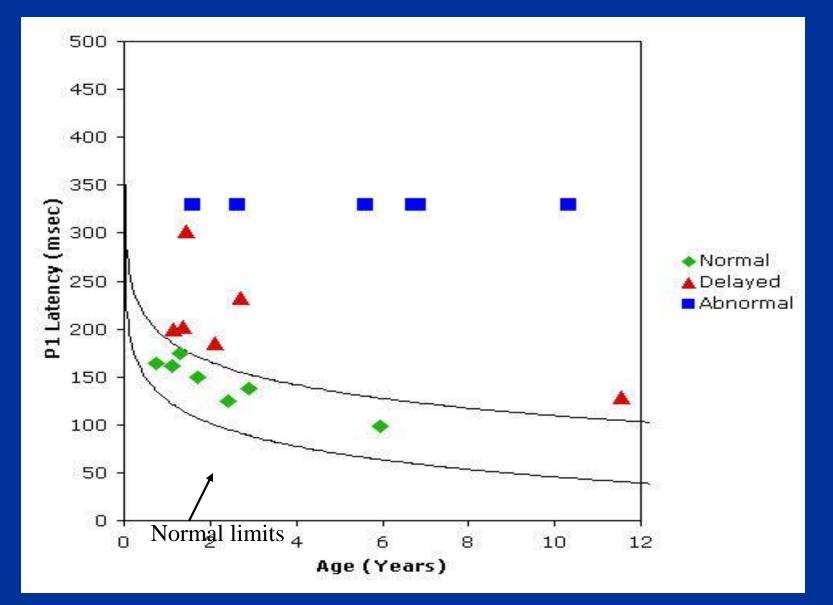
Lack of neural synchrony is a hallmark of children with ANSD

CAEP in ANSD

CAEP can be measured in many patients with ANSD

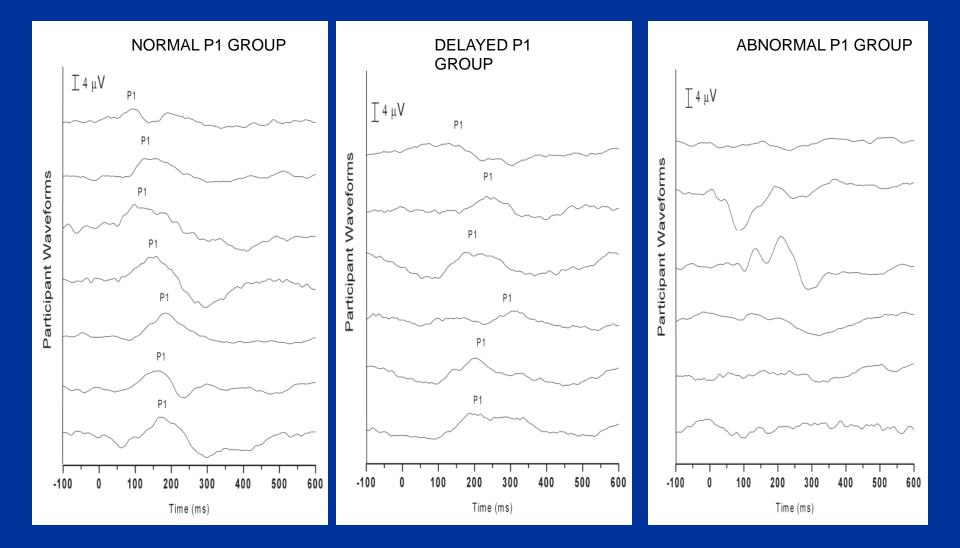
Starr et al., (1991), Kraus et al.,
(2000), Rance et al., (2002, 2004,
2005, 2008, 2009), Michalewski et al., (2005, 2009), Pearce et al.
(2007)

To explore development and plasticity of the central auditory pathway in with ANSD. <u>Cortical Maturation in Children</u> with ANSD


• Existing data base of 115 children with ANSD on whom we have cortical maturation data.

- Majority have congenital disorder
- Initial analysis on subset of children

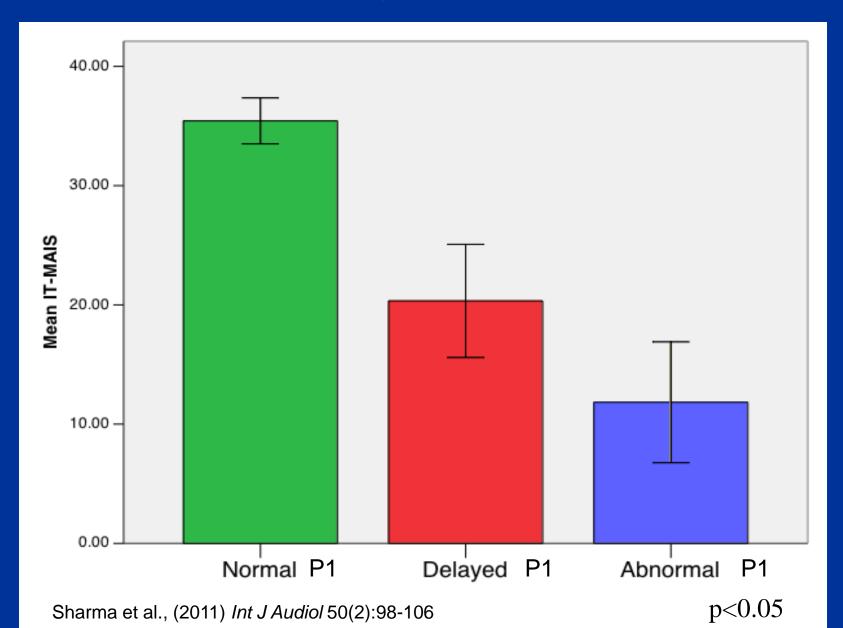
Sharma et al., (2011) Int J Audiol 50(2):98-106.


Participant	Etiology	ABR	OAE - R	OAE - L	PTA unaided R	PTA unaided L	HA Fit Age
NORMAL						165	
2	Jaundiced - no trtmt	CM present Au - 92 dBnHL CM present Au; Wave V component developed over time down to 50 dBnHL(prolonged interpeak latencies)	DPs absent TEOAEs present	DPs absent TEOAEs/DPOA Es present	63	<u>108</u> 31	1.08
3	oxygen deprivation @ birth	CM present Au (100) Wave V @ 100	DPOAEs absent	DPOAEs absent		95	1.68
4	prematurity (27 week), low birth weight, hyperbilirubinemia, chronic lung disease, ototoxic meds	CM present Au (80dBnHL)	TEOAEs absent	TEOAEs absent	62	70	0.77
5	prematurity (36 weeks), mech vent, diaphragmatic hernia, ototoxic meds	CM present Au - initially no Wave V. Wave V emerged with CM Au(60 RE/70LE) at age 2 mo	TE and DPOAEs partially present -reduced amp over time	TE and DPOAEs partially present -reduced amp over time	72	75	0.27
6	prematurity (31 week), NICU stay, jaundice (blood transfusion), mech. Vent	CM present Au (90)	TE and DPOAEs present	TE and DPOAEs present	38	70	0.36
7	premature	CM Present (down to 65) Au	absent	absent	82	78	0.33
DELAYED							
8	prematurity, failure to thrive, kidney problems, blood transfusion	CM clear for RE (85), no distinguishable wave V LE	tracings unavailable	tracings unavailable	95		0.63
9		CM noted - clearer for LE	DPOAEs absent	DPOAEs absent	90	80	0.16
10	prematurity (24 week), low birth weight, hyperbilirubinemia, 3 blood transfusions	CM present Au (90)	TE and DPOAEs absent	TE and DPOAEs absent	60		1.29
11	prematurity (36 week), acute hepatitis and kidney failure, ototoxic meds, NICU stay, mech ventilation	CM present Au (90, 80) - larger left ear	TEOAEs absent	TEOAEs absent	70	67	2.62
12	family history - no known risk factors	CM present, (90, 21.1) Au, reversal down to 11.1	TE absent, DPOAE present	TE absent, DPOAE present	82	85	2.38
13	prematurity (28 week), jaundiced, mech vent, chronic lung disease, hypothyroidism	unilateral AN - CM RE only	TEOAEs absent	TEOAEs absent	80	82	0.59
ABNORMAL							
14	maternal tuberculosis + medication, radiation exposure (X-Ray in utero), hernia on umbilical cord	CM Present Au (90)	DP/TEOAEs partially present	reported absent	93	68	6.72
15	jaundiced	CM present Au (90dBnHL)	TE and DPOAEs present	TE and DPOAEs present	98	93	2.4
16	prematurity (gest. Age 6 mo), transfusions, extended NICU stay, ototoxic meds	CM present Au (90/95 R)	DPOAEs absent	DPOAEs absent	83	85	2
17	seizures, family history of hearing loss	CM present, (90, 21.1) Au, reversal down to 11.1	TEOAEs absent/DPOAE s present	TEOAEs absent/DPOAE s present	93	98	6.12
18	epilepsy, other developmental delays	CM Present (92) Au, more clear for left ear	TEOAEs absent	TEOAEs absent	111	80	1.82
19	prematurity (32 week), NICU stay, mech vent, blood transfusions, ototoxic meds	CM present Au (80)	TE and DPOAEs absent	TE and DPOAEs absent	62	93	0.72

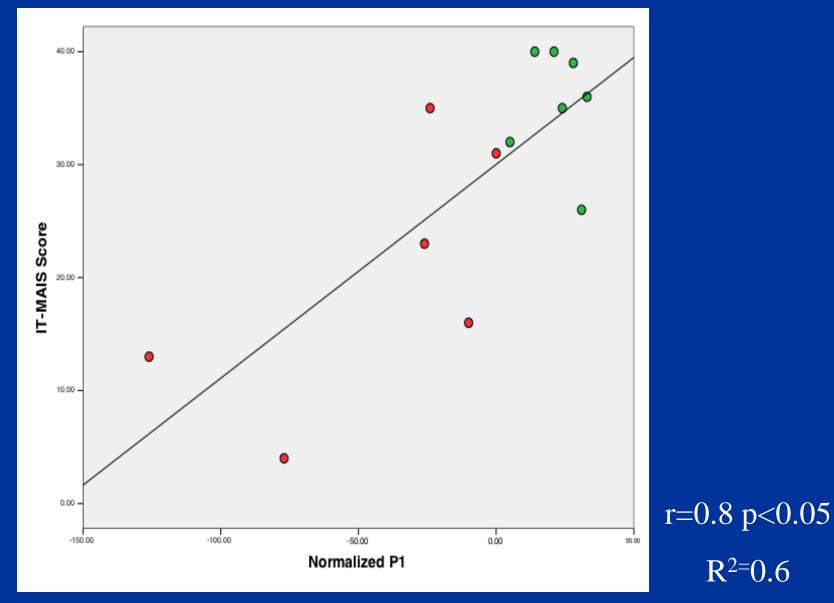
Cortical response (P1) latencies

Sharma et al., (2011) Int J Audiol 50(2):98-106

ANSD CHILDREN FELL INTO 3 DISTINCT GROUPS REFLECTING THE EXTENT OF DISRUPTION IN NEURAL DYS-SYNCHRONY AND ITS EFFECT IN CORTICAL DEVELOPMENT.

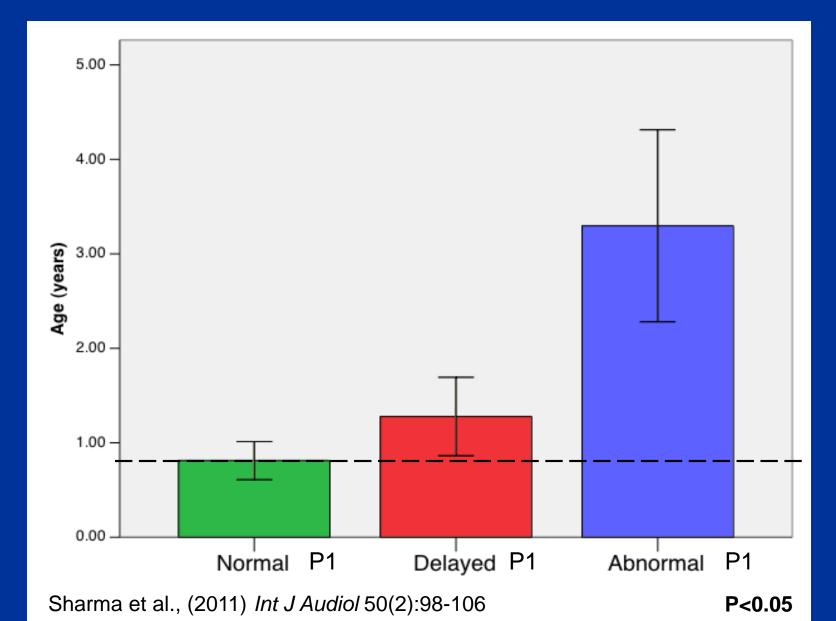


Sharma et al., (2011) Int J Audiol 50(2):98-106.


Due to proprietary information contained on this slide, you will not be able to view it. Thank you for your understanding.

We correlated the P1 against the IT-MAIS test of auditory skill development.

P1 vs auditory development


Relationship between cortical maturation and behavioral auditory skill development.

Sharma et al., (2011) Int J Audiol 50(2):98-106

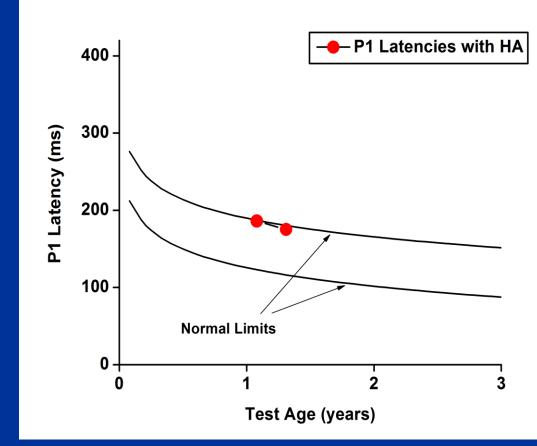
Cortical maturation may be an important predictor of speech/language outcomes in children with ANSD.

Hearing aid fit age

• There are likely sensitive periods for cortical maturation in children with congenital ANSD.

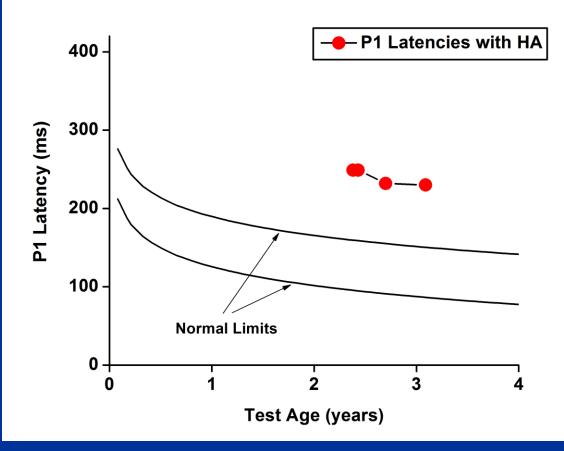
 Appropriate treatment options provided within these time frames may increase likelihood of successful outcomes for children with ANSD.

- 38% of children showed normal cortical development and good behavioral outcomes.
- Normal cortical development is suggestive of mild synchrony problem which <u>may</u> benefit from hearing aids consistent with Rance et al., (2002).

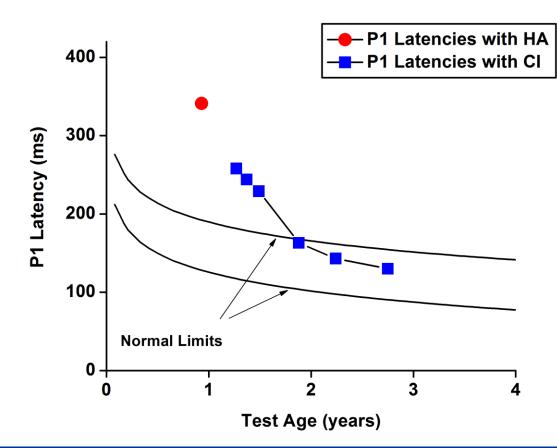

- 33% showed delayed and 29 % showed abnormal cortical development and poor behavioral outcomes.
- Delayed and abnormal cortical development likely reflect more severe synchrony problems.

Sharma, Cardon et al., International Journal of Audiology 2011; 50: 98–106

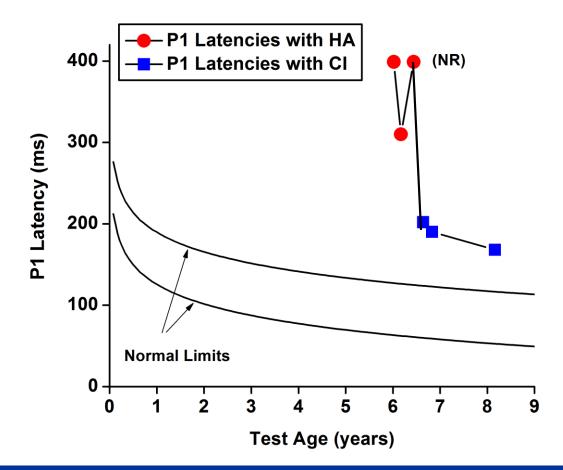
We are exploring the use of cortical potentials to assist in management of children with ANSD.


Benefit From Hearing Aid Use

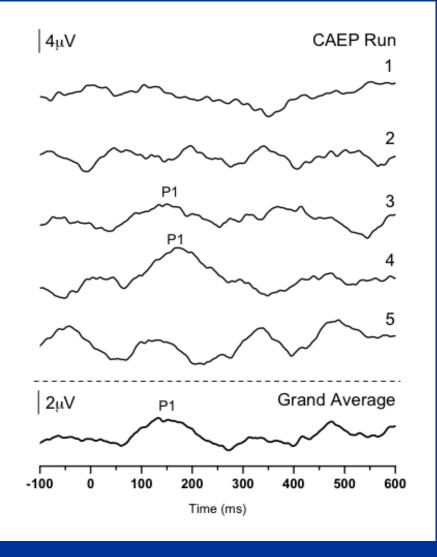
- <u>IT-MAIS Score</u>: 32
- <u>IT-MAIS Age</u>: 1.08
- <u>PTA Unaided</u>: 62
- <u>PTA Aided</u>: 40
- <u>HA Fit Age</u>: .77
- <u>Etiology</u>: prematurity (27 week), low birth weight, hyperbilirubinemia, chronic lung disease, ototoxic meds


No Benefit From Hearing Aid Use

- <u>IT-MAIS Score</u>: 4
- <u>IT-MAIS Age</u>: 1.08
- <u>PTA Unaided</u>: 83
- <u>PTA Aided</u>: 57
- <u>HA Fit Age</u>: 2.38
- <u>Etiology</u>: family history no known risk factors

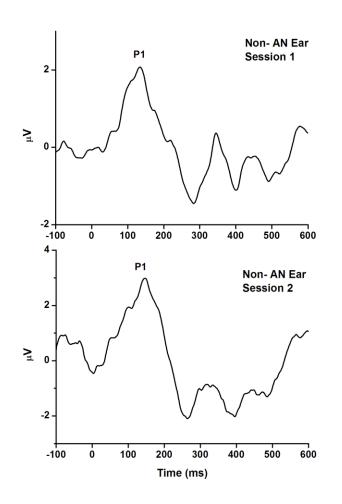

Benefit From CI Use

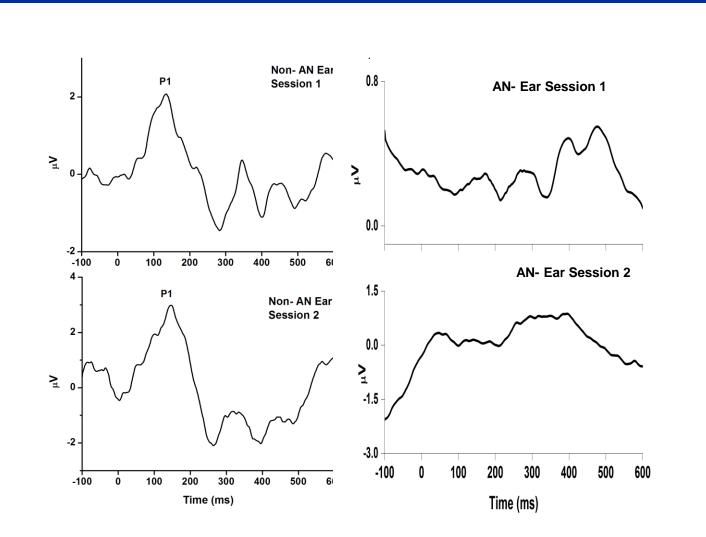
- <u>IT-MAIS Score</u>:
- <u>IT-MAIS Age</u>:
- <u>PTA Unaided</u>: 105
- <u>PTA Aided</u>: 85
- <u>HA Fit Age</u>: .90
- <u>CI Fit Age</u>: 1.27
- <u>Etiology</u>: twin no other known risk factors



Persistently Delayed Postimplant

- <u>IT-MAIS Score</u>: 9
- <u>IT-MAIS Age</u>: 6.83
- <u>PTA Unaided</u>: 95
- <u>PTA Aided</u>: 65
- <u>HA Fit Age</u>: 6.12
- <u>CI Fit Age</u>: 6.62
- <u>Etiology</u>: seizures, fam history of hearing loss


High Intra-individual variability in some patients with ANSD


Case Study

- 9 year old child with congenital unilateral AN in left ear.
- <u>AN ear:</u> Normal OAE, Abnormal ABR; mild hearing loss, speech discrimination 20%, poor speech perception in noise.
- <u>Non AN ear:</u> Normal OAE, ABR, normal pure tone thresholds, speech discrimination 92%, good speech perception in noise.

9 yr. old with unilateral ANSD

9 yr. old with unilateral ANSD

High Density EEG study Cortical Auditory Evoked Potentials from 64 scalp electrodes

Due to proprietary information contained on this slide, you will not be able to view it. Thank you for your understanding.

<u>CONCLUSIONS</u>

Children with ANSD show different patterns of cortical maturation.

Normal cortical maturation appears to reflect better synchrony and is a good predictor of acquisition of oral speech and language.

On the other hand, delayed, abnormal and variable cortical potentials reflect poor dys-synchrony and correlates with poor speech outcomes.

Overall Conclusions

Cortical potentials are powerful objective bio-markers of central auditory system plasticity and maturation.

Biomarkers of plasticity are useful to guide clinical intervention via hearing aids and/or cochlear implants for children with hearing loss and ANSD.

Brain and Behavior Laboratory

http://www.colorado.edu/slhs/eeglab

anu.sharma@colorado.edu

Julia Campbell Garrett Cardon Phillip Gilley Amy Nash Megan Loehman Katy Brooks **Tim Beneke** Jehan Alsalmi **Justin Langran**

Tracy White Erin Castioni Nils Penard Madhu Sundarrajan Tara Reed Elizabeth Parks Tony Spahr Katrina Agung

Julia Campbell

Garrett Cardon