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AGENDA
Cochlear development
Connecting the cochlea to the brain

When do we first “hear”?

Early formation of the central auditory pathways.

Basic science studies of central auditory system development.

Evoked potential studies of human auditory system development.

Tracking auditory brain development in children after cochlear implantation.
Age related plasticity in auditory system development.

How does basic science inform us about clinical issues?

Some “bench to bedside” discussion; take home messages.




Cochlear development involves humerous
structures, physiological systems and genes
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Ethnicity and mutations in GJB2 (connexin 26) and GJB6 (connexin 30) in a
multi-cultural Canadian paediatric Cochlear Implant Program.

Int J Pediatr Otorhinolaryngol. 2006 Mar;70(3):435-44.

Key developmental stages at the cochlear level

(time lines for human)
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Key developmental stages at the cochlear level

(time lines for human and rat species)
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Development of the tectorial membrane
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The cochlea at birth

precocious vs. altricious species
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Connecting the cochlea to the brain

*Immature neurons in the otocyst grow centrally towards brainstem. A 7
*They split (twice) to connect with target cells in AVCN, PVCN and DCN.
*Mid regions of the cochlea connect up first, apical and basal areas later.
«Initial projections/connection are cochleotopic.

eInitial wiring occurs before any sound driven auditory input.

*May be a role for intrinsic (spontaneous) activity.

*Connections in humans complete at 20-30 weeks (i.e. 10 -20 weeks before birth)

When do we first “hear”?

* Cochlea connects up at 10 - 20 weeks
before birth

* First “function” is some weeks later

¢ ABR can be recorded in babies born
15 weeks premature

* Blink startle reflex to acoustic
stimulation observed (by ultrasound)
at 24-25 weeks gestational age

Discussion

Does this mean the baby really can “hear”?
What do we mean by “hear”?

What acoustic signals can be detected?
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Developmental refinements of the auditory pathways

Afferent Auditory Pathways
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The sensory epithelium of the
cochlea projects in organized

way to auditory cortex.
(tonotopic /cochleotopic organization)

Neurolmage 11, 302—312 (2000)

Cochleotopic (tonotopic) organization of primary auditory cortex

(in Human and Cat)
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Cortical frequency map
development after a
neonatal cochlear lesion

ABR Audiogram
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HARRISON, R.V., NAGASAWA A., SMITH
D.W, STANTON S. and MOUNT R.J. (1991):
Reorganization of auditory cortex after
neonatal high frequency cochlear hearing loss.
Hearing Research, 54, 11 -19.

Reorganization of auditory cortex by neonatal environmental sound stimulation
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Auditory Neuroscience 2, 97-107
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Organization and programming of central
auditory system shows age related plasticity

* All sensory systems have an early period of plasticity; visual,
somatosensory, auditory.

* Early changes to cochlear activity patterns (e.g. caused by hearing
loss) results in a reorganization and reprogramming of auditory
cortex.

* Early changes to cochlear activity patterns also causes sub cortical
reorganization (e.g. thalamus, midbrain).

* In more mature subjects the degree of plasticity is significantly
reduced. Cortex can only be remodelled if sounds are
“behaviourally significant”.

* Age related plasticity has very important impact on how we
approach hearing loss in children. Early detection, early
intervention.

Age related plasticity revealed in speech understanding
in children with cochlear implants
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GORDON KA, DAYA H, HARRISON, R.V., PAPSIN BC (2000) Factors contributing to limited open-set
speech perception in children who use a cochlear implant. Int J Pediatr Otorhinolaryngol. 56: 101-111.




Speech understanding in children at age 6 (entering school system)
implanted at different times after birth
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Speech perception outcome results at age 6 years. Results from four tests: TAC, PBK
word; PBK phoneme; GASP word. The mean score (%) for congenitally deaf children, at
six years of age, who have not yet received an implant is shown (black bar), and who had
a cochlear implant device implantation at ages 2, 3, 4 or 5 years of age (see key).

GORDON KA, DAYA H, HARRISON, R.V., PAPSIN BC (2000) Factors contributing to limited open-set
speech perception in children who use a cochlear implant. Int J Pediatr Otorhinolaryngol. 56: 101-111.

Recording the response properties of cortical neurons to tone stimuli
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Increase in complexity of neuron responses in auditory cortex with age

“simple response” “‘complex response”
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Increase in complexity of neuron responses in auditory cortex with age
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Proportion of “complex cells” in auditory cortex with age

40} omplex temporal
omplex spectral and temporal
omplex spectral

30 25 50
dB SPL

20}

% units

10+

P3 P15 P30 Adult

Pienkowski and Harrison (2005)
J. Neurophysiol. 93: 454-466

Increased complexity of auditory neuron responses reflects
development of inter-neuronal connections

Fig 2. [llustration of laminar organization of cortex. Nu-

merals 1 to 6 indicate cortical layers. WM — deep white M t t
matter. Adapted from Ramon y Cajal.® a u re Cor eX

Cortex in early development (highly schematic)




Increased complexity of auditory neuron responses reflects
development of inter-neuronal connections
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Developmental refinements of the auditory pathways
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Neural “connectivity” improves with age

cortical neuron onset response latencies (chinchilla) at different ages
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Pienkowski and Harrison (2005)
J. Neurophysiol. 93: 454-466

Acoustically evoked auditory potentials
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Evoked potential studies of human auditory system development
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Data from various works by Jos Eggermont

Evoked potential studies of human auditory system development
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Electrically evoked auditory potentials in children with cochlear implants
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Evoked potential studies of human auditory system development
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Post natal development of auditory cortex takes many years

40 fw 45m 2y My

Fig 1. Neurofilament-immunostained sections of corti-
cal tissue. At 40th fetal week (fw) and at 4.5 months”

postnatal age. mature axons are present only in marginal
layer. By 2 years of age, mature neurofilament-express-
ing axons are entering deeper cortical layers. By 11 years,
mature axons are present with adult-like density in all
cortical layers.

Fig 2. lllustration of laminar organization of cortex, Nu-
merals 1 10 6 indicate cortical layers. WM — deep white
matter. Adapted from Ramon y Cajal.®

Reference: Moore J.K 2002 ann otol rhinol laryngol 111, 7-10




Post natal development of auditory cortex takes many years
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Fig 1. Neurofilament-immunostained sections of corti-
cal tissue. At 40th fetal week (fw) and at 4.5 months’
postnatal age. mature axons are present only in marginal
layer. By 2 years of age, mature neurofilament-express-

Fig 2. lNlustration of laminar organization of cortex, Nu-

ing axons are entering deeper cortical layers. By 11 years, merals 1 10 6 indicate cortical layers. WM — deep white
mature axons are present with adult-like density in all matter. Adapted from Ramon y Cajal.6

cortical layers.

Reference: Moore J.K 2002 ann otol rhinol laryngol 111, 7-10

Developmental issues related to bi-lateral cochlear implantation in children

What are the effects on auditory system development of
having input from only one side (single CI)?

Does a second, later implanted, contralateral
cochlear implant work?

Simultaneous versus sequential bilateral cochlear
implantation.

Normal neural substrate for binaural processing

NORMAL

Auditory brainstem

MEO
Superior olivary complex




Developmental plasticity of the binaural system
Effects of early input from only one ear (one cochlea ablated)

ABLATED
COCHLEA

Aberrant axonal branching in brainstem
after unilateral otocyst removal
(Parks and Jackson, 1986)

Effects on neonatal cochlear damage on the development
of auditory pathways (in gerbil). (Kitzes L.M 1986)

Question: - how is this different from a congenitally deaf child with one cochlear implant?

Using objective measures (ABRs) to assess
binaural processing in kids with bilateral
cochlear implants

e Binaural processes are first
established at the level of
the brainstem

e Timing and level differences
between the ears are
compared for sound
localization
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Testing auditory connections
on both sides in kids with
bilateral cochlear implants
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Mismatched timing of input to auditory brainstem (ABR)
in children with sequential bilateral cochlear implantation.

Child A: Simultaneous

Gordon,et al., 2007




Mismatched timing of input to auditory brainstem (ABR)
in children with sequential bilateral cochlear implantation.

Child A: Simultaneous
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Speech perception in children using
bilateral cochlear implants

bilateral bilateral in noise
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Auditory Development and Brain Plasticity

Some clinically relevant “take home messages”:

The pattern of cochlear nerve activity in the neonatal subject
influences central auditory system organization.

Sensorineural hearing loss from an early age will result
in cortical frequency map reorganization as well as many
other aspects of auditory brain “programming”.

Stimulation of the cochlear nerve by electrical stimulation with a cochlear implant
drives the formation of auditory pathways in a rather “unusual” way.

The timing of binaural cochlear implantation is important.

A cochlear implant in a congenitally deaf infant serves two functions hearing AND
development.

The auditory system has age related plasticity (especially in sub-cortical areas) and
this has important implications for early hearing loss detection and intervention
(next talk).
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