## Initial diagnostic testing of infants who fail newborn screening

#### Martyn Hyde

Professor, Otolaryngology/S-LP, University of Toronto Assoc Director, Hearing, Balance & Speech Dept, Mt Sinai Hosp Consultant, Ontario Infant Hearing Program & British Columbia Early Hearing Program

mhyde@mtsinai.on.ca

# Best textbook chapter ever written on this subject!

#### Thanks to:

Dr David Stapells
University of British Columbia
Vancouver, Canada

Frequency-Specific Threshold Assessment in Young Infants Using the Transient ABR and the Brainstem ASSR

Chapter 21, in: RC Seewald & AM Tharpe (Eds) Comprehensive Handbook of Pediatric Audiology San Diego, Plural Publishing

# Challenge: after AABR screen fail or direct high-risk referral:

- Significant hearing loss? YES / NO
- If YES, what type?
   Conductive (T or P) Conventional cochlear
   ANSD Brainstem neural
   Any mixture of these!
- If NOT Conductive (T), ANSD or neural: Thresholds sufficient to specify amplification, Implant candidacy, baseline for progression

3

## Additional challenges

- Validity & accuracy, given limited data in young infants with proven permanent hearing loss, especially for ASSR & for bone-conduction
- Efficiency & completeness, given three pressures: access, baby EEG state & early intervention

### Present diagnostic tools

- Tonepip ABR (air & bone conduction)
- Brainstem (80 Hz) ASSR: single/multiple-frequency
- Click ABR & cochlear microphonic (CM)
- (Long-latency cortical potentials)
- OAE (Distortion Product or Transient): 1-4 kHz
- Tympanometry:1 kHz probe < 6 months
- Middle-ear muscle reflexes: ipsi, 1k, wide-band

5

#### AABR screen will NOT fail:

- ANY abnormal audiogram with ANY threshold better than 30 dBHL in the range 1-8 kHz
- These include:
   Sloping losses n

Sloping losses normal at 1kHz or above Steep high-frequency losses above 1kHz Reverse-slope losses normal at 8kHz or below U-shaped losses normal at 1kHz or 8kHz













# Clicks are an otoneurologic tool, not a sufficient threshold tool

- Would you do an adult hearing test with white noise only?
- Infants deserve the best possible audiometry
- Clicks have many technical deficiencies & may soon be replaced by chirps

13

#### Best published data to date + long experience **TONE-ABR THRESHOLD (dBnHL)** 500 Hz 2000 Hz 4000 Hz 120 90 60 73 ears 96 ears 51 ears r = .94r = .95r = .97120 0 90 90 PURE-TONE BEHAVIOURAL THRESHOLD (dBHL) Stapells, Gravel & Martin, 1995

## Estimated Hearing Level (eHL)

- Determine tone-ABR threshold:
   ABR present at x dBnHL, absent at x-10
- Correction factor C is normative median difference (ABR threshold – HL threshold)
- eHL threshold = ABR threshold C
- AC 500 15 dB 1k 10 dB 2k 5 dB 4k 0 dB

15

### Minimum intensity levels (25 dBeHL) Recording time < 10 mins



16

#### Successful diagnostic ABR testing

- Sufficient caseload to develop/maintain skills
- 4-8 weeks corrected age, 4 weeks after screen
- Natural sleep, arrive tired & hungry, feed after electrode attachment
- TWO insert transducers, whenever possible
- Hand-held BC if trained, otherwise use Velcro band
- High-efficiency (top-down, progressive) strategy:
   Every test condition is chosen so its result will make the greatest difference to baby MANAGEMENT if the test stopped at that point....

17

#### Minimum test for AABR failures? Loss probability: No risk 0.1, High risk 0.4

- Statistical false positive AABR N hearing
- ABR detection failure high EEG noise levels
- Transient hearing loss/debris/probe blockage
- Permanent hearing loss (1-8 kHz)/ANSD
- Test options: 2k, 4k, 1k, 500
   2k, 500 or 4k, 1k
   2k only !?
- ABR at minimum required level? Yes: STOP
   No: ENTER EFFICIENT AUDIOGRAM STRATEGY

## Minimum test for direct Dx referral (eg very high risk, no AABR screen)

- ANY hearing loss profile is possible, so:
- ENTER EFFICIENT AUDIOGRAM STRATEGY

-19

## Efficient loss type strategy

- Try OAE first if baby not asleep (esp. high risk)
- If OAE 2k present & 2k ABR absent at 90 dBnHL, ANSD is present
- If first ear 2k 'normal', change ears immediately
- If first ear 2k threshold >=40 dBnHL go to BC
- If BC 2k ABR present at min level, stop

### Efficient threshold strategy

- Start with 2kHz at minimum level & go up in LARGE steps (20-30 dB)
   Never do input-output function with 10 dB steps!
- Use 1-2000 sweeps with repetition if needed
- Bracket threshold with 10 dB step, repeated averages & use residual noise level (RNL)
- Aim to locate threshold in <= 6 averages

## Example of inefficiency











## Common error in ABR detection

- There are THREE decision outcomes, not TWO: Present, Absent, and INDETERMINATE
- If EEG noise level is not low enough, you cannot and must not say that response is absent or present (different criteria for each)
- Guessing is much worse that saying 'I don't know'
- Should use residual noise level if available





### ASSR: some comments

- 80Hz ASSR is probably ABR V-V' difficult to prove
- High stimulus rate is efficient, objective detection is convenient, immunity to 60 Hz interference is useful
- 'Better frequency-specificity' NOT proven in infants with definite SNHL
- 'Can measure greater hearing losses' is probably an artifact of dBnHL vs HL (or vestibular response)

#### Tone-ABR vs s-ASSR vs m-ASSR

- m-ASSR less efficient for frequency-intensity strategy
- In young infants with proven SNHL:

Very few *good* studies of s- or m-ASSR accuracy No normative studies of BC No good studies of relative efficiency Insufficient data on stimulus interactions Optimal test parameters are not well-established

## Behavioural (VRA) vs m-ASSR, 21 infants Luts et al Audiol Neurotol 2006;11:24-37



## BUT...we can say that in infants:

• Multiple ASSR (one or two ears, AC) is a valid & efficient tool to prove absence of significant hearing loss, given response at:

• Recent data show a strong relationship between multiple-ASSR & tone-ABR thresholds (Van Maanen & Stapells, JAAA 2010)

## Multiple ASSR (AC) vs tone-ABR in infants with hearing loss (Van Maanen & Stapells 2010)



## Mensajes para llevar...

- Clicks are not good enough
- Tone ABR AC & BC is valid & practicable
   High-efficiency standard protocol is essential
- DO NOT need local norms. Google: 'BC Early Hearing Program Diagnostic Audiology Protocol'
- ASSR is efficient for normal/abnormal decision
- Insufficient ASSR data for complete audiometry

